// ================================================================== // >>>>>>>>>>>>>>>>>>>>>>> COPYRIGHT NOTICE <<<<<<<<<<<<<<<<<<<<<<<<< // ------------------------------------------------------------------ // Copyright (c) 2006-2011 by Lattice Semiconductor Corporation // ALL RIGHTS RESERVED // ------------------------------------------------------------------ // // IMPORTANT: THIS FILE IS AUTO-GENERATED BY THE LATTICEMICO SYSTEM. // // Permission: // // Lattice Semiconductor grants permission to use this code // pursuant to the terms of the Lattice Semiconductor Corporation // Open Source License Agreement. // // Disclaimer: // // Lattice Semiconductor provides no warranty regarding the use or // functionality of this code. It is the user's responsibility to // verify the user’s design for consistency and functionality through // the use of formal verification methods. // // -------------------------------------------------------------------- // // Lattice Semiconductor Corporation // 5555 NE Moore Court // Hillsboro, OR 97214 // U.S.A // // TEL: 1-800-Lattice (USA and Canada) // 503-286-8001 (other locations) // // web: http://www.latticesemi.com/ // email: techsupport@latticesemi.com // // -------------------------------------------------------------------- // FILE DETAILS // Project : LatticeMico32 // File : lm32_cpu.v // Title : Top-level of CPU. // Dependencies : lm32_include.v // // Version 3.9 // 1. Support added for 'Fast Download' register in Debugger // // Version 3.8 // 1. Feature: Support for dynamically switching EBA to DEBA via a GPIO. // 2. Bug: EA now reports instruction that caused the data abort, rather than // next instruction. // // Version 3.4 // 1. Bug Fix: In a tight infinite loop (add, sw, bi) incoming interrupts were // never serviced. // // Version 3.3 // 1. Feature: Support for memory that is tightly coupled to processor core, and // has a single-cycle access latency (same as caches). Instruction port has // access to a dedicated physically-mapped memory. Data port has access to // a dedicated physically-mapped memory. In order to be able to manipulate // values in both these memories via the debugger, these memories also // interface with the data port of LM32. // 2. Feature: Extended Configuration Register // 3. Bug Fix: Removed port names that conflict with keywords reserved in System- // Verilog. // // Version 3.2 // 1. Bug Fix: Single-stepping a load/store to invalid address causes debugger to // hang. At the same time CPU fails to register data bus error exception. Bug // is caused because (a) data bus error exception occurs after load/store has // passed X stage and next sequential instruction (e.g., brk) is already in X // stage, and (b) data bus error exception had lower priority than, say, brk // exception. // 2. Bug Fix: If a brk (or scall/eret/bret) sequentially follows a load/store to // invalid location, CPU will fail to register data bus error exception. The // solution is to stall scall/eret/bret/brk instructions in D pipeline stage // until load/store has completed. // 3. Feature: Enable precise identification of load/store that causes seg fault. // 4. SYNC resets used for register file when implemented in EBRs. // // Version 3.1 // 1. Feature: LM32 Register File can now be mapped in to on-chip block RAM (EBR) // instead of distributed memory by enabling the option in LM32 GUI. // 2. Feature: LM32 also adds a static branch predictor to improve branch // performance. All immediate-based forward-pointing branches are predicted // not-taken. All immediate-based backward-pointing branches are predicted taken. // // Version 7.0SP2, 3.0 // No Change // // Version 6.1.17 // Initial Release // ============================================================================= `include "lm32_include.v" ///////////////////////////////////////////////////// // Module interface ///////////////////////////////////////////////////// module lm32_cpu ( // ----- Inputs ------- clk_i, `ifdef CFG_EBR_NEGEDGE_REGISTER_FILE clk_n_i, `endif rst_i, `ifdef CFG_DEBUG_ENABLED `ifdef CFG_ALTERNATE_EBA at_debug, `endif `endif // From external devices `ifdef CFG_INTERRUPTS_ENABLED interrupt_n, `endif // From user logic `ifdef CFG_USER_ENABLED user_result, user_complete, `endif `ifdef CFG_JTAG_ENABLED // From JTAG jtag_clk, jtag_update, jtag_reg_q, jtag_reg_addr_q, `endif `ifdef CFG_IWB_ENABLED // Instruction Wishbone master I_DAT_I, I_ACK_I, I_ERR_I, I_RTY_I, `endif // Data Wishbone master D_DAT_I, D_ACK_I, D_ERR_I, D_RTY_I, // ----- Outputs ------- `ifdef CFG_TRACE_ENABLED trace_pc, trace_pc_valid, trace_exception, trace_eid, trace_eret, `ifdef CFG_DEBUG_ENABLED trace_bret, `endif `endif `ifdef CFG_JTAG_ENABLED jtag_reg_d, jtag_reg_addr_d, `endif `ifdef CFG_USER_ENABLED user_valid, user_opcode, user_operand_0, user_operand_1, `endif `ifdef CFG_IWB_ENABLED // Instruction Wishbone master I_DAT_O, I_ADR_O, I_CYC_O, I_SEL_O, I_STB_O, I_WE_O, I_CTI_O, I_LOCK_O, I_BTE_O, `endif // Data Wishbone master D_DAT_O, D_ADR_O, D_CYC_O, D_SEL_O, D_STB_O, D_WE_O, D_CTI_O, D_LOCK_O, D_BTE_O ); ///////////////////////////////////////////////////// // Parameters ///////////////////////////////////////////////////// parameter eba_reset = `CFG_EBA_RESET; // Reset value for EBA CSR `ifdef CFG_DEBUG_ENABLED parameter deba_reset = `CFG_DEBA_RESET; // Reset value for DEBA CSR `endif `ifdef CFG_ICACHE_ENABLED parameter icache_associativity = `CFG_ICACHE_ASSOCIATIVITY; // Associativity of the cache (Number of ways) parameter icache_sets = `CFG_ICACHE_SETS; // Number of sets parameter icache_bytes_per_line = `CFG_ICACHE_BYTES_PER_LINE; // Number of bytes per cache line parameter icache_base_address = `CFG_ICACHE_BASE_ADDRESS; // Base address of cachable memory parameter icache_limit = `CFG_ICACHE_LIMIT; // Limit (highest address) of cachable memory `else parameter icache_associativity = 1; parameter icache_sets = 512; parameter icache_bytes_per_line = 16; parameter icache_base_address = 0; parameter icache_limit = 0; `endif `ifdef CFG_DCACHE_ENABLED parameter dcache_associativity = `CFG_DCACHE_ASSOCIATIVITY; // Associativity of the cache (Number of ways) parameter dcache_sets = `CFG_DCACHE_SETS; // Number of sets parameter dcache_bytes_per_line = `CFG_DCACHE_BYTES_PER_LINE; // Number of bytes per cache line parameter dcache_base_address = `CFG_DCACHE_BASE_ADDRESS; // Base address of cachable memory parameter dcache_limit = `CFG_DCACHE_LIMIT; // Limit (highest address) of cachable memory `else parameter dcache_associativity = 1; parameter dcache_sets = 512; parameter dcache_bytes_per_line = 16; parameter dcache_base_address = 0; parameter dcache_limit = 0; `endif `ifdef CFG_DEBUG_ENABLED parameter watchpoints = `CFG_WATCHPOINTS; // Number of h/w watchpoint CSRs `else parameter watchpoints = 0; `endif `ifdef CFG_ROM_DEBUG_ENABLED parameter breakpoints = `CFG_BREAKPOINTS; // Number of h/w breakpoint CSRs `else parameter breakpoints = 0; `endif `ifdef CFG_INTERRUPTS_ENABLED parameter interrupts = `CFG_INTERRUPTS; // Number of interrupts `else parameter interrupts = 0; `endif ///////////////////////////////////////////////////// // Inputs ///////////////////////////////////////////////////// input clk_i; // Clock `ifdef CFG_EBR_NEGEDGE_REGISTER_FILE input clk_n_i; // Inverted clock `endif input rst_i; // Reset `ifdef CFG_DEBUG_ENABLED `ifdef CFG_ALTERNATE_EBA input at_debug; // GPIO input that maps EBA to DEBA `endif `endif `ifdef CFG_INTERRUPTS_ENABLED input [`LM32_INTERRUPT_RNG] interrupt_n; // Interrupt pins, active-low `endif `ifdef CFG_USER_ENABLED input [`LM32_WORD_RNG] user_result; // User-defined instruction result input user_complete; // User-defined instruction execution is complete `endif `ifdef CFG_JTAG_ENABLED input jtag_clk; // JTAG clock input jtag_update; // JTAG state machine is in data register update state `ifdef CFG_FAST_DOWNLOAD_ENABLED input [`DOWNLOAD_BUFFER_SIZE-1:0] jtag_reg_q; `else input [7:0] jtag_reg_q; `endif input [2:0] jtag_reg_addr_q; `endif `ifdef CFG_IWB_ENABLED input [`LM32_WORD_RNG] I_DAT_I; // Instruction Wishbone interface read data input I_ACK_I; // Instruction Wishbone interface acknowledgement input I_ERR_I; // Instruction Wishbone interface error input I_RTY_I; // Instruction Wishbone interface retry `endif input [`LM32_WORD_RNG] D_DAT_I; // Data Wishbone interface read data input D_ACK_I; // Data Wishbone interface acknowledgement input D_ERR_I; // Data Wishbone interface error input D_RTY_I; // Data Wishbone interface retry ///////////////////////////////////////////////////// // Outputs ///////////////////////////////////////////////////// `ifdef CFG_TRACE_ENABLED output [`LM32_PC_RNG] trace_pc; // PC to trace reg [`LM32_PC_RNG] trace_pc; output trace_pc_valid; // Indicates that a new trace PC is valid reg trace_pc_valid; output trace_exception; // Indicates an exception has occured reg trace_exception; output [`LM32_EID_RNG] trace_eid; // Indicates what type of exception has occured reg [`LM32_EID_RNG] trace_eid; output trace_eret; // Indicates an eret instruction has been executed reg trace_eret; `ifdef CFG_DEBUG_ENABLED output trace_bret; // Indicates a bret instruction has been executed reg trace_bret; `endif `endif `ifdef CFG_JTAG_ENABLED output [`LM32_BYTE_RNG] jtag_reg_d; wire [`LM32_BYTE_RNG] jtag_reg_d; output [2:0] jtag_reg_addr_d; wire [2:0] jtag_reg_addr_d; `endif `ifdef CFG_USER_ENABLED output user_valid; // Indicates if user_opcode is valid wire user_valid; output [`LM32_USER_OPCODE_RNG] user_opcode; // User-defined instruction opcode reg [`LM32_USER_OPCODE_RNG] user_opcode; output [`LM32_WORD_RNG] user_operand_0; // First operand for user-defined instruction wire [`LM32_WORD_RNG] user_operand_0; output [`LM32_WORD_RNG] user_operand_1; // Second operand for user-defined instruction wire [`LM32_WORD_RNG] user_operand_1; `endif `ifdef CFG_IWB_ENABLED output [`LM32_WORD_RNG] I_DAT_O; // Instruction Wishbone interface write data wire [`LM32_WORD_RNG] I_DAT_O; output [`LM32_WORD_RNG] I_ADR_O; // Instruction Wishbone interface address wire [`LM32_WORD_RNG] I_ADR_O; output I_CYC_O; // Instruction Wishbone interface cycle wire I_CYC_O; output [`LM32_BYTE_SELECT_RNG] I_SEL_O; // Instruction Wishbone interface byte select wire [`LM32_BYTE_SELECT_RNG] I_SEL_O; output I_STB_O; // Instruction Wishbone interface strobe wire I_STB_O; output I_WE_O; // Instruction Wishbone interface write enable wire I_WE_O; output [`LM32_CTYPE_RNG] I_CTI_O; // Instruction Wishbone interface cycle type wire [`LM32_CTYPE_RNG] I_CTI_O; output I_LOCK_O; // Instruction Wishbone interface lock bus wire I_LOCK_O; output [`LM32_BTYPE_RNG] I_BTE_O; // Instruction Wishbone interface burst type wire [`LM32_BTYPE_RNG] I_BTE_O; `endif output [`LM32_WORD_RNG] D_DAT_O; // Data Wishbone interface write data wire [`LM32_WORD_RNG] D_DAT_O; output [`LM32_WORD_RNG] D_ADR_O; // Data Wishbone interface address wire [`LM32_WORD_RNG] D_ADR_O; output D_CYC_O; // Data Wishbone interface cycle wire D_CYC_O; output [`LM32_BYTE_SELECT_RNG] D_SEL_O; // Data Wishbone interface byte select wire [`LM32_BYTE_SELECT_RNG] D_SEL_O; output D_STB_O; // Data Wishbone interface strobe wire D_STB_O; output D_WE_O; // Data Wishbone interface write enable wire D_WE_O; output [`LM32_CTYPE_RNG] D_CTI_O; // Data Wishbone interface cycle type wire [`LM32_CTYPE_RNG] D_CTI_O; output D_LOCK_O; // Date Wishbone interface lock bus wire D_LOCK_O; output [`LM32_BTYPE_RNG] D_BTE_O; // Data Wishbone interface burst type wire [`LM32_BTYPE_RNG] D_BTE_O; ///////////////////////////////////////////////////// // Internal nets and registers ///////////////////////////////////////////////////// // Pipeline registers `ifdef LM32_CACHE_ENABLED reg valid_a; // Instruction in A stage is valid `endif reg valid_f; // Instruction in F stage is valid reg valid_d; // Instruction in D stage is valid reg valid_x; // Instruction in X stage is valid reg valid_m; // Instruction in M stage is valid reg valid_w; // Instruction in W stage is valid wire q_x; wire [`LM32_WORD_RNG] immediate_d; // Immediate operand wire load_d; // Indicates a load instruction reg load_x; reg load_m; wire load_q_x; wire store_q_x; wire store_d; // Indicates a store instruction reg store_x; reg store_m; wire [`LM32_SIZE_RNG] size_d; // Size of load/store (byte, hword, word) reg [`LM32_SIZE_RNG] size_x; wire branch_d; // Indicates a branch instruction wire branch_predict_d; // Indicates a branch is predicted wire branch_predict_taken_d; // Indicates a branch is predicted taken wire [`LM32_PC_RNG] branch_predict_address_d; // Address to which predicted branch jumps wire [`LM32_PC_RNG] branch_target_d; wire bi_unconditional; wire bi_conditional; reg branch_x; reg branch_predict_x; reg branch_predict_taken_x; reg branch_m; reg branch_predict_m; reg branch_predict_taken_m; wire branch_mispredict_taken_m; // Indicates a branch was mispredicted as taken wire branch_flushX_m; // Indicates that instruction in X stage must be squashed wire branch_reg_d; // Branch to register or immediate wire [`LM32_PC_RNG] branch_offset_d; // Branch offset for immediate branches reg [`LM32_PC_RNG] branch_target_x; // Address to branch to reg [`LM32_PC_RNG] branch_target_m; wire [`LM32_D_RESULT_SEL_0_RNG] d_result_sel_0_d; // Which result should be selected in D stage for operand 0 wire [`LM32_D_RESULT_SEL_1_RNG] d_result_sel_1_d; // Which result should be selected in D stage for operand 1 wire x_result_sel_csr_d; // Select X stage result from CSRs reg x_result_sel_csr_x; `ifdef LM32_MC_ARITHMETIC_ENABLED wire x_result_sel_mc_arith_d; // Select X stage result from multi-cycle arithmetic unit reg x_result_sel_mc_arith_x; `endif `ifdef LM32_NO_BARREL_SHIFT wire x_result_sel_shift_d; // Select X stage result from shifter reg x_result_sel_shift_x; `endif `ifdef CFG_SIGN_EXTEND_ENABLED wire x_result_sel_sext_d; // Select X stage result from sign-extend logic reg x_result_sel_sext_x; `endif wire x_result_sel_logic_d; // Select X stage result from logic op unit reg x_result_sel_logic_x; `ifdef CFG_USER_ENABLED wire x_result_sel_user_d; // Select X stage result from user-defined logic reg x_result_sel_user_x; `endif wire x_result_sel_add_d; // Select X stage result from adder reg x_result_sel_add_x; wire m_result_sel_compare_d; // Select M stage result from comparison logic reg m_result_sel_compare_x; reg m_result_sel_compare_m; `ifdef CFG_PL_BARREL_SHIFT_ENABLED wire m_result_sel_shift_d; // Select M stage result from shifter reg m_result_sel_shift_x; reg m_result_sel_shift_m; `endif wire w_result_sel_load_d; // Select W stage result from load/store unit reg w_result_sel_load_x; reg w_result_sel_load_m; reg w_result_sel_load_w; `ifdef CFG_PL_MULTIPLY_ENABLED wire w_result_sel_mul_d; // Select W stage result from multiplier reg w_result_sel_mul_x; reg w_result_sel_mul_m; reg w_result_sel_mul_w; `endif wire x_bypass_enable_d; // Whether result is bypassable in X stage reg x_bypass_enable_x; wire m_bypass_enable_d; // Whether result is bypassable in M stage reg m_bypass_enable_x; reg m_bypass_enable_m; wire sign_extend_d; // Whether to sign-extend or zero-extend reg sign_extend_x; wire write_enable_d; // Register file write enable reg write_enable_x; wire write_enable_q_x; reg write_enable_m; wire write_enable_q_m; reg write_enable_w; wire write_enable_q_w; wire read_enable_0_d; // Register file read enable 0 wire [`LM32_REG_IDX_RNG] read_idx_0_d; // Register file read index 0 wire read_enable_1_d; // Register file read enable 1 wire [`LM32_REG_IDX_RNG] read_idx_1_d; // Register file read index 1 wire [`LM32_REG_IDX_RNG] write_idx_d; // Register file write index reg [`LM32_REG_IDX_RNG] write_idx_x; reg [`LM32_REG_IDX_RNG] write_idx_m; reg [`LM32_REG_IDX_RNG] write_idx_w; wire [`LM32_CSR_RNG] csr_d; // CSR read/write index reg [`LM32_CSR_RNG] csr_x; wire [`LM32_CONDITION_RNG] condition_d; // Branch condition reg [`LM32_CONDITION_RNG] condition_x; `ifdef CFG_DEBUG_ENABLED wire break_d; // Indicates a break instruction reg break_x; `endif wire scall_d; // Indicates a scall instruction reg scall_x; wire eret_d; // Indicates an eret instruction reg eret_x; wire eret_q_x; reg eret_m; `ifdef CFG_TRACE_ENABLED reg eret_w; `endif `ifdef CFG_DEBUG_ENABLED wire bret_d; // Indicates a bret instruction reg bret_x; wire bret_q_x; reg bret_m; `ifdef CFG_TRACE_ENABLED reg bret_w; `endif `endif wire csr_write_enable_d; // CSR write enable reg csr_write_enable_x; wire csr_write_enable_q_x; `ifdef CFG_USER_ENABLED wire [`LM32_USER_OPCODE_RNG] user_opcode_d; // User-defined instruction opcode `endif `ifdef CFG_BUS_ERRORS_ENABLED wire bus_error_d; // Indicates an bus error occured while fetching the instruction in this pipeline stage reg bus_error_x; reg data_bus_error_exception_m; reg [`LM32_PC_RNG] memop_pc_w; `endif reg [`LM32_WORD_RNG] d_result_0; // Result of instruction in D stage (operand 0) reg [`LM32_WORD_RNG] d_result_1; // Result of instruction in D stage (operand 1) reg [`LM32_WORD_RNG] x_result; // Result of instruction in X stage reg [`LM32_WORD_RNG] m_result; // Result of instruction in M stage reg [`LM32_WORD_RNG] w_result; // Result of instruction in W stage reg [`LM32_WORD_RNG] operand_0_x; // Operand 0 for X stage instruction reg [`LM32_WORD_RNG] operand_1_x; // Operand 1 for X stage instruction reg [`LM32_WORD_RNG] store_operand_x; // Data read from register to store reg [`LM32_WORD_RNG] operand_m; // Operand for M stage instruction reg [`LM32_WORD_RNG] operand_w; // Operand for W stage instruction // To/from register file `ifdef CFG_EBR_POSEDGE_REGISTER_FILE reg [`LM32_WORD_RNG] reg_data_live_0; reg [`LM32_WORD_RNG] reg_data_live_1; reg use_buf; // Whether to use reg_data_live or reg_data_buf reg [`LM32_WORD_RNG] reg_data_buf_0; reg [`LM32_WORD_RNG] reg_data_buf_1; `endif `ifdef LM32_EBR_REGISTER_FILE `else reg [`LM32_WORD_RNG] registers[0:(1<<`LM32_REG_IDX_WIDTH)-1]; // Register file `endif wire [`LM32_WORD_RNG] reg_data_0; // Register file read port 0 data wire [`LM32_WORD_RNG] reg_data_1; // Register file read port 1 data reg [`LM32_WORD_RNG] bypass_data_0; // Register value 0 after bypassing reg [`LM32_WORD_RNG] bypass_data_1; // Register value 1 after bypassing wire reg_write_enable_q_w; reg interlock; // Indicates pipeline should be stalled because of a read-after-write hazzard wire stall_a; // Stall instruction in A pipeline stage wire stall_f; // Stall instruction in F pipeline stage wire stall_d; // Stall instruction in D pipeline stage wire stall_x; // Stall instruction in X pipeline stage wire stall_m; // Stall instruction in M pipeline stage // To/from adder wire adder_op_d; // Whether to add or subtract reg adder_op_x; reg adder_op_x_n; // Inverted version of adder_op_x wire [`LM32_WORD_RNG] adder_result_x; // Result from adder wire adder_overflow_x; // Whether a signed overflow occured wire adder_carry_n_x; // Whether a carry was generated // To/from logical operations unit wire [`LM32_LOGIC_OP_RNG] logic_op_d; // Which operation to perform reg [`LM32_LOGIC_OP_RNG] logic_op_x; wire [`LM32_WORD_RNG] logic_result_x; // Result of logical operation `ifdef CFG_SIGN_EXTEND_ENABLED // From sign-extension unit wire [`LM32_WORD_RNG] sextb_result_x; // Result of byte sign-extension wire [`LM32_WORD_RNG] sexth_result_x; // Result of half-word sign-extenstion wire [`LM32_WORD_RNG] sext_result_x; // Result of sign-extension specified by instruction `endif // To/from shifter `ifdef CFG_PL_BARREL_SHIFT_ENABLED `ifdef CFG_ROTATE_ENABLED wire rotate_d; // Whether we should rotate or shift reg rotate_x; `endif wire direction_d; // Which direction to shift in reg direction_x; wire [`LM32_WORD_RNG] shifter_result_m; // Result of shifter `endif `ifdef CFG_MC_BARREL_SHIFT_ENABLED wire shift_left_d; // Indicates whether to perform a left shift or not wire shift_left_q_d; wire shift_right_d; // Indicates whether to perform a right shift or not wire shift_right_q_d; `endif `ifdef LM32_NO_BARREL_SHIFT wire [`LM32_WORD_RNG] shifter_result_x; // Result of single-bit right shifter `endif // To/from multiplier `ifdef LM32_MULTIPLY_ENABLED wire [`LM32_WORD_RNG] multiplier_result_w; // Result from multiplier `endif `ifdef CFG_MC_MULTIPLY_ENABLED wire multiply_d; // Indicates whether to perform a multiply or not wire multiply_q_d; `endif // To/from divider `ifdef CFG_MC_DIVIDE_ENABLED wire divide_d; // Indicates whether to perform a divider or not wire divide_q_d; wire modulus_d; wire modulus_q_d; wire divide_by_zero_x; // Indicates an attempt was made to divide by zero `endif // To from multi-cycle arithmetic unit `ifdef LM32_MC_ARITHMETIC_ENABLED wire mc_stall_request_x; // Multi-cycle arithmetic unit stall request wire [`LM32_WORD_RNG] mc_result_x; `endif // From CSRs `ifdef CFG_INTERRUPTS_ENABLED wire [`LM32_WORD_RNG] interrupt_csr_read_data_x;// Data read from interrupt CSRs `endif wire [`LM32_WORD_RNG] cfg; // Configuration CSR wire [`LM32_WORD_RNG] cfg2; // Extended Configuration CSR `ifdef CFG_CYCLE_COUNTER_ENABLED reg [`LM32_WORD_RNG] cc; // Cycle counter CSR `endif reg [`LM32_WORD_RNG] csr_read_data_x; // Data read from CSRs // To/from instruction unit wire [`LM32_PC_RNG] pc_f; // PC of instruction in F stage wire [`LM32_PC_RNG] pc_d; // PC of instruction in D stage wire [`LM32_PC_RNG] pc_x; // PC of instruction in X stage wire [`LM32_PC_RNG] pc_m; // PC of instruction in M stage wire [`LM32_PC_RNG] pc_w; // PC of instruction in W stage wire [31:0] full_pc_f; wire [31:0] full_pc_d; wire [31:0] full_pc_x; wire [31:0] full_pc_m; wire [31:0] full_pc_w; assign full_pc_f = {pc_f, 2'b00}; assign full_pc_d = {pc_d, 2'b00}; assign full_pc_x = {pc_x, 2'b00}; assign full_pc_m = {pc_m, 2'b00}; assign full_pc_w = {pc_w, 2'b00}; `ifdef CFG_TRACE_ENABLED reg [`LM32_PC_RNG] pc_c; // PC of last commited instruction `endif `ifdef CFG_EBR_POSEDGE_REGISTER_FILE wire [`LM32_INSTRUCTION_RNG] instruction_f; // Instruction in F stage `endif //pragma attribute instruction_d preserve_signal true //pragma attribute instruction_d preserve_driver true wire [`LM32_INSTRUCTION_RNG] instruction_d; // Instruction in D stage `ifdef CFG_ICACHE_ENABLED wire iflush; // Flush instruction cache wire icache_stall_request; // Stall pipeline because instruction cache is busy wire icache_restart_request; // Restart instruction that caused an instruction cache miss wire icache_refill_request; // Request to refill instruction cache wire icache_refilling; // Indicates the instruction cache is being refilled `endif `ifdef CFG_IROM_ENABLED wire [`LM32_WORD_RNG] irom_store_data_m; // Store data to instruction ROM wire [`LM32_WORD_RNG] irom_address_xm; // Address to instruction ROM from load-store unit wire [`LM32_WORD_RNG] irom_data_m; // Load data from instruction ROM wire irom_we_xm; // Indicates data needs to be written to instruction ROM wire irom_stall_request_x; // Indicates D stage needs to be stalled on a store to instruction ROM `endif // To/from load/store unit `ifdef CFG_DCACHE_ENABLED wire dflush_x; // Flush data cache reg dflush_m; wire dcache_stall_request; // Stall pipeline because data cache is busy wire dcache_restart_request; // Restart instruction that caused a data cache miss wire dcache_refill_request; // Request to refill data cache wire dcache_refilling; // Indicates the data cache is being refilled `endif wire [`LM32_WORD_RNG] load_data_w; // Result of a load instruction wire stall_wb_load; // Stall pipeline because of a load via the data Wishbone interface // To/from JTAG interface `ifdef CFG_JTAG_ENABLED `ifdef CFG_JTAG_UART_ENABLED wire [`LM32_WORD_RNG] jtx_csr_read_data; // Read data for JTX CSR wire [`LM32_WORD_RNG] jrx_csr_read_data; // Read data for JRX CSR `endif `ifdef CFG_HW_DEBUG_ENABLED wire jtag_csr_write_enable; // Debugger CSR write enable wire [`LM32_WORD_RNG] jtag_csr_write_data; // Data to write to specified CSR wire [`LM32_CSR_RNG] jtag_csr; // Which CSR to write wire jtag_read_enable; wire [`LM32_BYTE_RNG] jtag_read_data; wire jtag_write_enable; wire [`LM32_BYTE_RNG] jtag_write_data; wire [`LM32_WORD_RNG] jtag_address; wire jtag_access_complete; `endif `ifdef CFG_DEBUG_ENABLED wire jtag_break; // Request from debugger to raise a breakpoint `endif `endif // Hazzard detection wire raw_x_0; // RAW hazzard between instruction in X stage and read port 0 wire raw_x_1; // RAW hazzard between instruction in X stage and read port 1 wire raw_m_0; // RAW hazzard between instruction in M stage and read port 0 wire raw_m_1; // RAW hazzard between instruction in M stage and read port 1 wire raw_w_0; // RAW hazzard between instruction in W stage and read port 0 wire raw_w_1; // RAW hazzard between instruction in W stage and read port 1 // Control flow wire cmp_zero; // Result of comparison is zero wire cmp_negative; // Result of comparison is negative wire cmp_overflow; // Comparison produced an overflow wire cmp_carry_n; // Comparison produced a carry, inverted reg condition_met_x; // Condition of branch instruction is met reg condition_met_m; `ifdef CFG_FAST_UNCONDITIONAL_BRANCH wire branch_taken_x; // Branch is taken in X stage `endif wire branch_taken_m; // Branch is taken in M stage wire kill_f; // Kill instruction in F stage wire kill_d; // Kill instruction in D stage wire kill_x; // Kill instruction in X stage wire kill_m; // Kill instruction in M stage wire kill_w; // Kill instruction in W stage reg [`LM32_PC_WIDTH+2-1:8] eba; // Exception Base Address (EBA) CSR `ifdef CFG_DEBUG_ENABLED reg [`LM32_PC_WIDTH+2-1:8] deba; // Debug Exception Base Address (DEBA) CSR `endif reg [`LM32_EID_RNG] eid_x; // Exception ID in X stage `ifdef CFG_TRACE_ENABLED reg [`LM32_EID_RNG] eid_m; // Exception ID in M stage reg [`LM32_EID_RNG] eid_w; // Exception ID in W stage `endif `ifdef CFG_DEBUG_ENABLED `ifdef LM32_SINGLE_STEP_ENABLED wire dc_ss; // Is single-step enabled `endif wire dc_re; // Remap all exceptions wire exception_x; // An exception occured in the X stage reg exception_m; // An instruction that caused an exception is in the M stage wire debug_exception_x; // Indicates if a debug exception has occured reg debug_exception_m; reg debug_exception_w; wire debug_exception_q_w; wire non_debug_exception_x; // Indicates if a non debug exception has occured reg non_debug_exception_m; reg non_debug_exception_w; wire non_debug_exception_q_w; `else wire exception_x; // Indicates if a debug exception has occured reg exception_m; reg exception_w; wire exception_q_w; `endif `ifdef CFG_DEBUG_ENABLED `ifdef CFG_JTAG_ENABLED wire reset_exception; // Indicates if a reset exception has occured `endif `endif `ifdef CFG_INTERRUPTS_ENABLED wire interrupt_exception; // Indicates if an interrupt exception has occured `endif `ifdef CFG_DEBUG_ENABLED wire breakpoint_exception; // Indicates if a breakpoint exception has occured wire watchpoint_exception; // Indicates if a watchpoint exception has occured `endif `ifdef CFG_BUS_ERRORS_ENABLED wire instruction_bus_error_exception; // Indicates if an instruction bus error exception has occured wire data_bus_error_exception; // Indicates if a data bus error exception has occured `endif `ifdef CFG_MC_DIVIDE_ENABLED wire divide_by_zero_exception; // Indicates if a divide by zero exception has occured `endif wire system_call_exception; // Indicates if a system call exception has occured `ifdef CFG_BUS_ERRORS_ENABLED reg data_bus_error_seen; // Indicates if a data bus error was seen `endif ///////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////// `include "lm32_functions.v" ///////////////////////////////////////////////////// // Instantiations ///////////////////////////////////////////////////// // Instruction unit lm32_instruction_unit #( .associativity (icache_associativity), .sets (icache_sets), .bytes_per_line (icache_bytes_per_line), .base_address (icache_base_address), .limit (icache_limit) ) instruction_unit ( // ----- Inputs ------- .clk_i (clk_i), .rst_i (rst_i), `ifdef CFG_DEBUG_ENABLED `ifdef CFG_ALTERNATE_EBA .at_debug (at_debug), `endif `endif // From pipeline .stall_a (stall_a), .stall_f (stall_f), .stall_d (stall_d), .stall_x (stall_x), .stall_m (stall_m), .valid_f (valid_f), .valid_d (valid_d), .kill_f (kill_f), .branch_predict_taken_d (branch_predict_taken_d), .branch_predict_address_d (branch_predict_address_d), `ifdef CFG_FAST_UNCONDITIONAL_BRANCH .branch_taken_x (branch_taken_x), .branch_target_x (branch_target_x), `endif .exception_m (exception_m), .branch_taken_m (branch_taken_m), .branch_mispredict_taken_m (branch_mispredict_taken_m), .branch_target_m (branch_target_m), `ifdef CFG_ICACHE_ENABLED .iflush (iflush), `endif `ifdef CFG_IROM_ENABLED .irom_store_data_m (irom_store_data_m), .irom_address_xm (irom_address_xm), .irom_we_xm (irom_we_xm), `endif `ifdef CFG_DCACHE_ENABLED .dcache_restart_request (dcache_restart_request), .dcache_refill_request (dcache_refill_request), .dcache_refilling (dcache_refilling), `endif `ifdef CFG_IWB_ENABLED // From Wishbone .i_dat_i (I_DAT_I), .i_ack_i (I_ACK_I), .i_err_i (I_ERR_I), `endif `ifdef CFG_HW_DEBUG_ENABLED .jtag_read_enable (jtag_read_enable), .jtag_write_enable (jtag_write_enable), .jtag_write_data (jtag_write_data), .jtag_address (jtag_address), `endif // ----- Outputs ------- // To pipeline .pc_f (pc_f), .pc_d (pc_d), .pc_x (pc_x), .pc_m (pc_m), .pc_w (pc_w), `ifdef CFG_ICACHE_ENABLED .icache_stall_request (icache_stall_request), .icache_restart_request (icache_restart_request), .icache_refill_request (icache_refill_request), .icache_refilling (icache_refilling), `endif `ifdef CFG_IROM_ENABLED .irom_data_m (irom_data_m), `endif `ifdef CFG_IWB_ENABLED // To Wishbone .i_dat_o (I_DAT_O), .i_adr_o (I_ADR_O), .i_cyc_o (I_CYC_O), .i_sel_o (I_SEL_O), .i_stb_o (I_STB_O), .i_we_o (I_WE_O), .i_cti_o (I_CTI_O), .i_lock_o (I_LOCK_O), .i_bte_o (I_BTE_O), `endif `ifdef CFG_HW_DEBUG_ENABLED .jtag_read_data (jtag_read_data), .jtag_access_complete (jtag_access_complete), `endif `ifdef CFG_BUS_ERRORS_ENABLED .bus_error_d (bus_error_d), `endif `ifdef CFG_EBR_POSEDGE_REGISTER_FILE .instruction_f (instruction_f), `endif .instruction_d (instruction_d) ); // Instruction decoder lm32_decoder decoder ( // ----- Inputs ------- .instruction (instruction_d), // ----- Outputs ------- .d_result_sel_0 (d_result_sel_0_d), .d_result_sel_1 (d_result_sel_1_d), .x_result_sel_csr (x_result_sel_csr_d), `ifdef LM32_MC_ARITHMETIC_ENABLED .x_result_sel_mc_arith (x_result_sel_mc_arith_d), `endif `ifdef LM32_NO_BARREL_SHIFT .x_result_sel_shift (x_result_sel_shift_d), `endif `ifdef CFG_SIGN_EXTEND_ENABLED .x_result_sel_sext (x_result_sel_sext_d), `endif .x_result_sel_logic (x_result_sel_logic_d), `ifdef CFG_USER_ENABLED .x_result_sel_user (x_result_sel_user_d), `endif .x_result_sel_add (x_result_sel_add_d), .m_result_sel_compare (m_result_sel_compare_d), `ifdef CFG_PL_BARREL_SHIFT_ENABLED .m_result_sel_shift (m_result_sel_shift_d), `endif .w_result_sel_load (w_result_sel_load_d), `ifdef CFG_PL_MULTIPLY_ENABLED .w_result_sel_mul (w_result_sel_mul_d), `endif .x_bypass_enable (x_bypass_enable_d), .m_bypass_enable (m_bypass_enable_d), .read_enable_0 (read_enable_0_d), .read_idx_0 (read_idx_0_d), .read_enable_1 (read_enable_1_d), .read_idx_1 (read_idx_1_d), .write_enable (write_enable_d), .write_idx (write_idx_d), .immediate (immediate_d), .branch_offset (branch_offset_d), .load (load_d), .store (store_d), .size (size_d), .sign_extend (sign_extend_d), .adder_op (adder_op_d), .logic_op (logic_op_d), `ifdef CFG_PL_BARREL_SHIFT_ENABLED .direction (direction_d), `endif `ifdef CFG_MC_BARREL_SHIFT_ENABLED .shift_left (shift_left_d), .shift_right (shift_right_d), `endif `ifdef CFG_MC_MULTIPLY_ENABLED .multiply (multiply_d), `endif `ifdef CFG_MC_DIVIDE_ENABLED .divide (divide_d), .modulus (modulus_d), `endif .branch (branch_d), .bi_unconditional (bi_unconditional), .bi_conditional (bi_conditional), .branch_reg (branch_reg_d), .condition (condition_d), `ifdef CFG_DEBUG_ENABLED .break_opcode (break_d), `endif .scall (scall_d), .eret (eret_d), `ifdef CFG_DEBUG_ENABLED .bret (bret_d), `endif `ifdef CFG_USER_ENABLED .user_opcode (user_opcode_d), `endif .csr_write_enable (csr_write_enable_d) ); // Load/store unit lm32_load_store_unit #( .associativity (dcache_associativity), .sets (dcache_sets), .bytes_per_line (dcache_bytes_per_line), .base_address (dcache_base_address), .limit (dcache_limit) ) load_store_unit ( // ----- Inputs ------- .clk_i (clk_i), .rst_i (rst_i), // From pipeline .stall_a (stall_a), .stall_x (stall_x), .stall_m (stall_m), .kill_m (kill_m), .exception_m (exception_m), .store_operand_x (store_operand_x), .load_store_address_x (adder_result_x), .load_store_address_m (operand_m), .load_store_address_w (operand_w[1:0]), .load_x (load_x), .store_x (store_x), .load_q_x (load_q_x), .store_q_x (store_q_x), .load_q_m (load_q_m), .store_q_m (store_q_m), .sign_extend_x (sign_extend_x), .size_x (size_x), `ifdef CFG_DCACHE_ENABLED .dflush (dflush_m), `endif `ifdef CFG_IROM_ENABLED .irom_data_m (irom_data_m), `endif // From Wishbone .d_dat_i (D_DAT_I), .d_ack_i (D_ACK_I), .d_err_i (D_ERR_I), .d_rty_i (D_RTY_I), // ----- Outputs ------- // To pipeline `ifdef CFG_DCACHE_ENABLED .dcache_refill_request (dcache_refill_request), .dcache_restart_request (dcache_restart_request), .dcache_stall_request (dcache_stall_request), .dcache_refilling (dcache_refilling), `endif `ifdef CFG_IROM_ENABLED .irom_store_data_m (irom_store_data_m), .irom_address_xm (irom_address_xm), .irom_we_xm (irom_we_xm), .irom_stall_request_x (irom_stall_request_x), `endif .load_data_w (load_data_w), .stall_wb_load (stall_wb_load), // To Wishbone .d_dat_o (D_DAT_O), .d_adr_o (D_ADR_O), .d_cyc_o (D_CYC_O), .d_sel_o (D_SEL_O), .d_stb_o (D_STB_O), .d_we_o (D_WE_O), .d_cti_o (D_CTI_O), .d_lock_o (D_LOCK_O), .d_bte_o (D_BTE_O) ); // Adder lm32_adder adder ( // ----- Inputs ------- .adder_op_x (adder_op_x), .adder_op_x_n (adder_op_x_n), .operand_0_x (operand_0_x), .operand_1_x (operand_1_x), // ----- Outputs ------- .adder_result_x (adder_result_x), .adder_carry_n_x (adder_carry_n_x), .adder_overflow_x (adder_overflow_x) ); // Logic operations lm32_logic_op logic_op ( // ----- Inputs ------- .logic_op_x (logic_op_x), .operand_0_x (operand_0_x), .operand_1_x (operand_1_x), // ----- Outputs ------- .logic_result_x (logic_result_x) ); `ifdef CFG_PL_BARREL_SHIFT_ENABLED // Pipelined barrel-shifter lm32_shifter shifter ( // ----- Inputs ------- .clk_i (clk_i), .rst_i (rst_i), .stall_x (stall_x), .direction_x (direction_x), .sign_extend_x (sign_extend_x), .operand_0_x (operand_0_x), .operand_1_x (operand_1_x), // ----- Outputs ------- .shifter_result_m (shifter_result_m) ); `endif `ifdef CFG_PL_MULTIPLY_ENABLED // Pipeline fixed-point multiplier lm32_multiplier multiplier ( // ----- Inputs ------- .clk_i (clk_i), .rst_i (rst_i), .stall_x (stall_x), .stall_m (stall_m), .operand_0 (d_result_0), .operand_1 (d_result_1), // ----- Outputs ------- .result (multiplier_result_w) ); `endif `ifdef LM32_MC_ARITHMETIC_ENABLED // Multi-cycle arithmetic lm32_mc_arithmetic mc_arithmetic ( // ----- Inputs ------- .clk_i (clk_i), .rst_i (rst_i), .stall_d (stall_d), .kill_x (kill_x), `ifdef CFG_MC_DIVIDE_ENABLED .divide_d (divide_q_d), .modulus_d (modulus_q_d), `endif `ifdef CFG_MC_MULTIPLY_ENABLED .multiply_d (multiply_q_d), `endif `ifdef CFG_MC_BARREL_SHIFT_ENABLED .shift_left_d (shift_left_q_d), .shift_right_d (shift_right_q_d), .sign_extend_d (sign_extend_d), `endif .operand_0_d (d_result_0), .operand_1_d (d_result_1), // ----- Outputs ------- .result_x (mc_result_x), `ifdef CFG_MC_DIVIDE_ENABLED .divide_by_zero_x (divide_by_zero_x), `endif .stall_request_x (mc_stall_request_x) ); `endif `ifdef CFG_INTERRUPTS_ENABLED // Interrupt unit lm32_interrupt interrupt ( // ----- Inputs ------- .clk_i (clk_i), .rst_i (rst_i), // From external devices .interrupt_n (interrupt_n), // From pipeline .stall_x (stall_x), `ifdef CFG_DEBUG_ENABLED .non_debug_exception (non_debug_exception_q_w), .debug_exception (debug_exception_q_w), `else .exception (exception_q_w), `endif .eret_q_x (eret_q_x), `ifdef CFG_DEBUG_ENABLED .bret_q_x (bret_q_x), `endif .csr (csr_x), .csr_write_data (operand_1_x), .csr_write_enable (csr_write_enable_q_x), // ----- Outputs ------- .interrupt_exception (interrupt_exception), // To pipeline .csr_read_data (interrupt_csr_read_data_x) ); `endif `ifdef CFG_JTAG_ENABLED // JTAG interface lm32_jtag jtag ( // ----- Inputs ------- .clk_i (clk_i), .rst_i (rst_i), // From JTAG .jtag_clk (jtag_clk), .jtag_update (jtag_update), .jtag_reg_q (jtag_reg_q), .jtag_reg_addr_q (jtag_reg_addr_q), // From pipeline `ifdef CFG_JTAG_UART_ENABLED .csr (csr_x), .csr_write_data (operand_1_x), .csr_write_enable (csr_write_enable_q_x), .stall_x (stall_x), `endif `ifdef CFG_HW_DEBUG_ENABLED .jtag_read_data (jtag_read_data), .jtag_access_complete (jtag_access_complete), `endif `ifdef CFG_DEBUG_ENABLED .exception_q_w (debug_exception_q_w || non_debug_exception_q_w), `endif // ----- Outputs ------- // To pipeline `ifdef CFG_JTAG_UART_ENABLED .jtx_csr_read_data (jtx_csr_read_data), .jrx_csr_read_data (jrx_csr_read_data), `endif `ifdef CFG_HW_DEBUG_ENABLED .jtag_csr_write_enable (jtag_csr_write_enable), .jtag_csr_write_data (jtag_csr_write_data), .jtag_csr (jtag_csr), .jtag_read_enable (jtag_read_enable), .jtag_write_enable (jtag_write_enable), .jtag_write_data (jtag_write_data), .jtag_address (jtag_address), `endif `ifdef CFG_DEBUG_ENABLED .jtag_break (jtag_break), .jtag_reset (reset_exception), `endif // To JTAG .jtag_reg_d (jtag_reg_d), .jtag_reg_addr_d (jtag_reg_addr_d) ); `endif `ifdef CFG_DEBUG_ENABLED // Debug unit lm32_debug #( .breakpoints (breakpoints), .watchpoints (watchpoints) ) hw_debug ( // ----- Inputs ------- .clk_i (clk_i), .rst_i (rst_i), .pc_x (pc_x), .load_x (load_x), .store_x (store_x), .load_store_address_x (adder_result_x), .csr_write_enable_x (csr_write_enable_q_x), .csr_write_data (operand_1_x), .csr_x (csr_x), `ifdef CFG_HW_DEBUG_ENABLED .jtag_csr_write_enable (jtag_csr_write_enable), .jtag_csr_write_data (jtag_csr_write_data), .jtag_csr (jtag_csr), `endif `ifdef LM32_SINGLE_STEP_ENABLED .eret_q_x (eret_q_x), .bret_q_x (bret_q_x), .stall_x (stall_x), .exception_x (exception_x), .q_x (q_x), `ifdef CFG_DCACHE_ENABLED .dcache_refill_request (dcache_refill_request), `endif `endif // ----- Outputs ------- `ifdef LM32_SINGLE_STEP_ENABLED .dc_ss (dc_ss), `endif .dc_re (dc_re), .bp_match (bp_match), .wp_match (wp_match) ); `endif // Register file `ifdef CFG_EBR_POSEDGE_REGISTER_FILE /*---------------------------------------------------------------------- Register File is implemented using EBRs. There can be three accesses to the register file in each cycle: two reads and one write. On-chip block RAM has two read/write ports. To accomodate three accesses, two on-chip block RAMs are used (each register file "write" is made to both block RAMs). One limitation of the on-chip block RAMs is that one cannot perform a read and write to same location in a cycle (if this is done, then the data read out is indeterminate). ----------------------------------------------------------------------*/ wire [31:0] regfile_data_0, regfile_data_1; reg [31:0] w_result_d; reg regfile_raw_0, regfile_raw_0_nxt; reg regfile_raw_1, regfile_raw_1_nxt; /*---------------------------------------------------------------------- Check if read and write is being performed to same register in current cycle? This is done by comparing the read and write IDXs. ----------------------------------------------------------------------*/ always @(reg_write_enable_q_w or write_idx_w or instruction_f) begin if (reg_write_enable_q_w && (write_idx_w == instruction_f[25:21])) regfile_raw_0_nxt = 1'b1; else regfile_raw_0_nxt = 1'b0; if (reg_write_enable_q_w && (write_idx_w == instruction_f[20:16])) regfile_raw_1_nxt = 1'b1; else regfile_raw_1_nxt = 1'b0; end /*---------------------------------------------------------------------- Select latched (delayed) write value or data from register file. If read in previous cycle was performed to register written to in same cycle, then latched (delayed) write value is selected. ----------------------------------------------------------------------*/ always @(regfile_raw_0 or w_result_d or regfile_data_0) if (regfile_raw_0) reg_data_live_0 = w_result_d; else reg_data_live_0 = regfile_data_0; /*---------------------------------------------------------------------- Select latched (delayed) write value or data from register file. If read in previous cycle was performed to register written to in same cycle, then latched (delayed) write value is selected. ----------------------------------------------------------------------*/ always @(regfile_raw_1 or w_result_d or regfile_data_1) if (regfile_raw_1) reg_data_live_1 = w_result_d; else reg_data_live_1 = regfile_data_1; /*---------------------------------------------------------------------- Latch value written to register file ----------------------------------------------------------------------*/ always @(posedge clk_i `CFG_RESET_SENSITIVITY) if (rst_i == `TRUE) begin regfile_raw_0 <= #1 1'b0; regfile_raw_1 <= #1 1'b0; w_result_d <= #1 32'b0; end else begin regfile_raw_0 <= #1 regfile_raw_0_nxt; regfile_raw_1 <= #1 regfile_raw_1_nxt; w_result_d <= #1 w_result; end /*---------------------------------------------------------------------- Register file instantiation as Pseudo-Dual Port EBRs. ----------------------------------------------------------------------*/ pmi_ram_dp #( // ----- Parameters ----- .pmi_wr_addr_depth(1<<5), .pmi_wr_addr_width(5), .pmi_wr_data_width(32), .pmi_rd_addr_depth(1<<5), .pmi_rd_addr_width(5), .pmi_rd_data_width(32), .pmi_regmode("noreg"), .pmi_gsr("enable"), .pmi_resetmode("sync"), .pmi_init_file("none"), .pmi_init_file_format("binary"), .pmi_family(`LATTICE_FAMILY), .module_type("pmi_ram_dp") ) reg_0 ( // ----- Inputs ----- .Data(w_result), .WrAddress(write_idx_w), .RdAddress(instruction_f[25:21]), .WrClock(clk_i), .RdClock(clk_i), .WrClockEn(`TRUE), .RdClockEn(`TRUE), .WE(reg_write_enable_q_w), .Reset(rst_i), // ----- Outputs ----- .Q(regfile_data_0) ); pmi_ram_dp #( // ----- Parameters ----- .pmi_wr_addr_depth(1<<5), .pmi_wr_addr_width(5), .pmi_wr_data_width(32), .pmi_rd_addr_depth(1<<5), .pmi_rd_addr_width(5), .pmi_rd_data_width(32), .pmi_regmode("noreg"), .pmi_gsr("enable"), .pmi_resetmode("sync"), .pmi_init_file("none"), .pmi_init_file_format("binary"), .pmi_family(`LATTICE_FAMILY), .module_type("pmi_ram_dp") ) reg_1 ( // ----- Inputs ----- .Data(w_result), .WrAddress(write_idx_w), .RdAddress(instruction_f[20:16]), .WrClock(clk_i), .RdClock(clk_i), .WrClockEn(`TRUE), .RdClockEn(`TRUE), .WE(reg_write_enable_q_w), .Reset(rst_i), // ----- Outputs ----- .Q(regfile_data_1) ); `endif `ifdef CFG_EBR_NEGEDGE_REGISTER_FILE pmi_ram_dp #( // ----- Parameters ----- .pmi_wr_addr_depth(1<<5), .pmi_wr_addr_width(5), .pmi_wr_data_width(32), .pmi_rd_addr_depth(1<<5), .pmi_rd_addr_width(5), .pmi_rd_data_width(32), .pmi_regmode("noreg"), .pmi_gsr("enable"), .pmi_resetmode("sync"), .pmi_init_file("none"), .pmi_init_file_format("binary"), .pmi_family(`LATTICE_FAMILY), .module_type("pmi_ram_dp") ) reg_0 ( // ----- Inputs ----- .Data(w_result), .WrAddress(write_idx_w), .RdAddress(read_idx_0_d), .WrClock(clk_i), .RdClock(clk_n_i), .WrClockEn(`TRUE), .RdClockEn(stall_f == `FALSE), .WE(reg_write_enable_q_w), .Reset(rst_i), // ----- Outputs ----- .Q(reg_data_0) ); pmi_ram_dp #( // ----- Parameters ----- .pmi_wr_addr_depth(1<<5), .pmi_wr_addr_width(5), .pmi_wr_data_width(32), .pmi_rd_addr_depth(1<<5), .pmi_rd_addr_width(5), .pmi_rd_data_width(32), .pmi_regmode("noreg"), .pmi_gsr("enable"), .pmi_resetmode("sync"), .pmi_init_file("none"), .pmi_init_file_format("binary"), .pmi_family(`LATTICE_FAMILY), .module_type("pmi_ram_dp") ) reg_1 ( // ----- Inputs ----- .Data(w_result), .WrAddress(write_idx_w), .RdAddress(read_idx_1_d), .WrClock(clk_i), .RdClock(clk_n_i), .WrClockEn(`TRUE), .RdClockEn(stall_f == `FALSE), .WE(reg_write_enable_q_w), .Reset(rst_i), // ----- Outputs ----- .Q(reg_data_1) ); `endif ///////////////////////////////////////////////////// // Combinational Logic ///////////////////////////////////////////////////// `ifdef CFG_EBR_POSEDGE_REGISTER_FILE // Select between buffered and live data from register file assign reg_data_0 = use_buf ? reg_data_buf_0 : reg_data_live_0; assign reg_data_1 = use_buf ? reg_data_buf_1 : reg_data_live_1; `endif `ifdef LM32_EBR_REGISTER_FILE `else // Register file read ports assign reg_data_0 = registers[read_idx_0_d]; assign reg_data_1 = registers[read_idx_1_d]; `endif // Detect read-after-write hazzards assign raw_x_0 = (write_idx_x == read_idx_0_d) && (write_enable_q_x == `TRUE); assign raw_m_0 = (write_idx_m == read_idx_0_d) && (write_enable_q_m == `TRUE); assign raw_w_0 = (write_idx_w == read_idx_0_d) && (write_enable_q_w == `TRUE); assign raw_x_1 = (write_idx_x == read_idx_1_d) && (write_enable_q_x == `TRUE); assign raw_m_1 = (write_idx_m == read_idx_1_d) && (write_enable_q_m == `TRUE); assign raw_w_1 = (write_idx_w == read_idx_1_d) && (write_enable_q_w == `TRUE); // Interlock detection - Raise an interlock for RAW hazzards always @(*) begin if ( ( (x_bypass_enable_x == `FALSE) && ( ((read_enable_0_d == `TRUE) && (raw_x_0 == `TRUE)) || ((read_enable_1_d == `TRUE) && (raw_x_1 == `TRUE)) ) ) || ( (m_bypass_enable_m == `FALSE) && ( ((read_enable_0_d == `TRUE) && (raw_m_0 == `TRUE)) || ((read_enable_1_d == `TRUE) && (raw_m_1 == `TRUE)) ) ) ) interlock = `TRUE; else interlock = `FALSE; end // Bypass for reg port 0 always @(*) begin if (raw_x_0 == `TRUE) bypass_data_0 = x_result; else if (raw_m_0 == `TRUE) bypass_data_0 = m_result; else if (raw_w_0 == `TRUE) bypass_data_0 = w_result; else bypass_data_0 = reg_data_0; end // Bypass for reg port 1 always @(*) begin if (raw_x_1 == `TRUE) bypass_data_1 = x_result; else if (raw_m_1 == `TRUE) bypass_data_1 = m_result; else if (raw_w_1 == `TRUE) bypass_data_1 = w_result; else bypass_data_1 = reg_data_1; end /*---------------------------------------------------------------------- Branch prediction is performed in D stage of pipeline. Only PC-relative branches are predicted: forward-pointing conditional branches are not- taken, while backward-pointing conditional branches are taken. Unconditional branches are always predicted taken! ----------------------------------------------------------------------*/ assign branch_predict_d = bi_unconditional | bi_conditional; assign branch_predict_taken_d = bi_unconditional ? 1'b1 : (bi_conditional ? instruction_d[15] : 1'b0); // Compute branch target address: Branch PC PLUS Offset assign branch_target_d = pc_d + branch_offset_d; // Compute fetch address. Address of instruction sequentially after the // branch if branch is not taken. Target address of branch is branch is // taken assign branch_predict_address_d = branch_predict_taken_d ? branch_target_d : pc_f; // D stage result selection always @(*) begin d_result_0 = d_result_sel_0_d[0] ? {pc_f, 2'b00} : bypass_data_0; case (d_result_sel_1_d) `LM32_D_RESULT_SEL_1_ZERO: d_result_1 = {`LM32_WORD_WIDTH{1'b0}}; `LM32_D_RESULT_SEL_1_REG_1: d_result_1 = bypass_data_1; `LM32_D_RESULT_SEL_1_IMMEDIATE: d_result_1 = immediate_d; default: d_result_1 = {`LM32_WORD_WIDTH{1'bx}}; endcase end `ifdef CFG_USER_ENABLED // Operands for user-defined instructions assign user_operand_0 = operand_0_x; assign user_operand_1 = operand_1_x; `endif `ifdef CFG_SIGN_EXTEND_ENABLED // Sign-extension assign sextb_result_x = {{24{operand_0_x[7]}}, operand_0_x[7:0]}; assign sexth_result_x = {{16{operand_0_x[15]}}, operand_0_x[15:0]}; assign sext_result_x = size_x == `LM32_SIZE_BYTE ? sextb_result_x : sexth_result_x; `endif `ifdef LM32_NO_BARREL_SHIFT // Only single bit shift operations are supported when barrel-shifter isn't implemented assign shifter_result_x = {operand_0_x[`LM32_WORD_WIDTH-1] & sign_extend_x, operand_0_x[`LM32_WORD_WIDTH-1:1]}; `endif // Condition evaluation assign cmp_zero = operand_0_x == operand_1_x; assign cmp_negative = adder_result_x[`LM32_WORD_WIDTH-1]; assign cmp_overflow = adder_overflow_x; assign cmp_carry_n = adder_carry_n_x; always @(*) begin case (condition_x) `LM32_CONDITION_U1: condition_met_x = `TRUE; `LM32_CONDITION_U2: condition_met_x = `TRUE; `LM32_CONDITION_E: condition_met_x = cmp_zero; `LM32_CONDITION_NE: condition_met_x = !cmp_zero; `LM32_CONDITION_G: condition_met_x = !cmp_zero && (cmp_negative == cmp_overflow); `LM32_CONDITION_GU: condition_met_x = cmp_carry_n && !cmp_zero; `LM32_CONDITION_GE: condition_met_x = cmp_negative == cmp_overflow; `LM32_CONDITION_GEU: condition_met_x = cmp_carry_n; default: condition_met_x = 1'bx; endcase end // X stage result selection always @(*) begin x_result = x_result_sel_add_x ? adder_result_x : x_result_sel_csr_x ? csr_read_data_x `ifdef CFG_SIGN_EXTEND_ENABLED : x_result_sel_sext_x ? sext_result_x `endif `ifdef CFG_USER_ENABLED : x_result_sel_user_x ? user_result `endif `ifdef LM32_NO_BARREL_SHIFT : x_result_sel_shift_x ? shifter_result_x `endif `ifdef LM32_MC_ARITHMETIC_ENABLED : x_result_sel_mc_arith_x ? mc_result_x `endif : logic_result_x; end // M stage result selection always @(*) begin m_result = m_result_sel_compare_m ? {{`LM32_WORD_WIDTH-1{1'b0}}, condition_met_m} `ifdef CFG_PL_BARREL_SHIFT_ENABLED : m_result_sel_shift_m ? shifter_result_m `endif : operand_m; end // W stage result selection always @(*) begin w_result = w_result_sel_load_w ? load_data_w `ifdef CFG_PL_MULTIPLY_ENABLED : w_result_sel_mul_w ? multiplier_result_w `endif : operand_w; end `ifdef CFG_FAST_UNCONDITIONAL_BRANCH // Indicate when a branch should be taken in X stage assign branch_taken_x = (stall_x == `FALSE) && ( (branch_x == `TRUE) && ((condition_x == `LM32_CONDITION_U1) || (condition_x == `LM32_CONDITION_U2)) && (valid_x == `TRUE) && (branch_predict_x == `FALSE) ); `endif // Indicate when a branch should be taken in M stage (exceptions are a type of branch) assign branch_taken_m = (stall_m == `FALSE) && ( ( (branch_m == `TRUE) && (valid_m == `TRUE) && ( ( (condition_met_m == `TRUE) && (branch_predict_taken_m == `FALSE) ) || ( (condition_met_m == `FALSE) && (branch_predict_m == `TRUE) && (branch_predict_taken_m == `TRUE) ) ) ) || (exception_m == `TRUE) ); // Indicate when a branch in M stage is mispredicted as being taken assign branch_mispredict_taken_m = (condition_met_m == `FALSE) && (branch_predict_m == `TRUE) && (branch_predict_taken_m == `TRUE); // Indicate when a branch in M stage will cause flush in X stage assign branch_flushX_m = (stall_m == `FALSE) && ( ( (branch_m == `TRUE) && (valid_m == `TRUE) && ( (condition_met_m == `TRUE) || ( (condition_met_m == `FALSE) && (branch_predict_m == `TRUE) && (branch_predict_taken_m == `TRUE) ) ) ) || (exception_m == `TRUE) ); // Generate signal that will kill instructions in each pipeline stage when necessary assign kill_f = ( (valid_d == `TRUE) && (branch_predict_taken_d == `TRUE) ) || (branch_taken_m == `TRUE) `ifdef CFG_FAST_UNCONDITIONAL_BRANCH || (branch_taken_x == `TRUE) `endif `ifdef CFG_ICACHE_ENABLED || (icache_refill_request == `TRUE) `endif `ifdef CFG_DCACHE_ENABLED || (dcache_refill_request == `TRUE) `endif ; assign kill_d = (branch_taken_m == `TRUE) `ifdef CFG_FAST_UNCONDITIONAL_BRANCH || (branch_taken_x == `TRUE) `endif `ifdef CFG_ICACHE_ENABLED || (icache_refill_request == `TRUE) `endif `ifdef CFG_DCACHE_ENABLED || (dcache_refill_request == `TRUE) `endif ; assign kill_x = (branch_flushX_m == `TRUE) `ifdef CFG_DCACHE_ENABLED || (dcache_refill_request == `TRUE) `endif ; assign kill_m = `FALSE `ifdef CFG_DCACHE_ENABLED || (dcache_refill_request == `TRUE) `endif ; assign kill_w = `FALSE `ifdef CFG_DCACHE_ENABLED || (dcache_refill_request == `TRUE) `endif ; // Exceptions `ifdef CFG_DEBUG_ENABLED assign breakpoint_exception = ( ( (break_x == `TRUE) || (bp_match == `TRUE) ) && (valid_x == `TRUE) ) `ifdef CFG_JTAG_ENABLED || (jtag_break == `TRUE) `endif ; `endif `ifdef CFG_DEBUG_ENABLED assign watchpoint_exception = wp_match == `TRUE; `endif `ifdef CFG_BUS_ERRORS_ENABLED assign instruction_bus_error_exception = ( (bus_error_x == `TRUE) && (valid_x == `TRUE) ); assign data_bus_error_exception = data_bus_error_seen == `TRUE; `endif `ifdef CFG_MC_DIVIDE_ENABLED assign divide_by_zero_exception = divide_by_zero_x == `TRUE; `endif assign system_call_exception = ( (scall_x == `TRUE) `ifdef CFG_BUS_ERRORS_ENABLED && (valid_x == `TRUE) `endif ); `ifdef CFG_DEBUG_ENABLED assign debug_exception_x = (breakpoint_exception == `TRUE) || (watchpoint_exception == `TRUE) ; assign non_debug_exception_x = (system_call_exception == `TRUE) `ifdef CFG_JTAG_ENABLED || (reset_exception == `TRUE) `endif `ifdef CFG_BUS_ERRORS_ENABLED || (instruction_bus_error_exception == `TRUE) || (data_bus_error_exception == `TRUE) `endif `ifdef CFG_MC_DIVIDE_ENABLED || (divide_by_zero_exception == `TRUE) `endif `ifdef CFG_INTERRUPTS_ENABLED || ( (interrupt_exception == `TRUE) `ifdef LM32_SINGLE_STEP_ENABLED && (dc_ss == `FALSE) `endif `ifdef CFG_BUS_ERRORS_ENABLED && (store_q_m == `FALSE) && (D_CYC_O == `FALSE) `endif ) `endif ; assign exception_x = (debug_exception_x == `TRUE) || (non_debug_exception_x == `TRUE); `else assign exception_x = (system_call_exception == `TRUE) `ifdef CFG_BUS_ERRORS_ENABLED || (instruction_bus_error_exception == `TRUE) || (data_bus_error_exception == `TRUE) `endif `ifdef CFG_MC_DIVIDE_ENABLED || (divide_by_zero_exception == `TRUE) `endif `ifdef CFG_INTERRUPTS_ENABLED || ( (interrupt_exception == `TRUE) `ifdef LM32_SINGLE_STEP_ENABLED && (dc_ss == `FALSE) `endif `ifdef CFG_BUS_ERRORS_ENABLED && (store_q_m == `FALSE) && (D_CYC_O == `FALSE) `endif ) `endif ; `endif // Exception ID always @(*) begin `ifdef CFG_DEBUG_ENABLED `ifdef CFG_JTAG_ENABLED if (reset_exception == `TRUE) eid_x = `LM32_EID_RESET; else `endif `ifdef CFG_BUS_ERRORS_ENABLED if (data_bus_error_exception == `TRUE) eid_x = `LM32_EID_DATA_BUS_ERROR; else `endif if (breakpoint_exception == `TRUE) eid_x = `LM32_EID_BREAKPOINT; else `endif `ifdef CFG_BUS_ERRORS_ENABLED if (data_bus_error_exception == `TRUE) eid_x = `LM32_EID_DATA_BUS_ERROR; else if (instruction_bus_error_exception == `TRUE) eid_x = `LM32_EID_INST_BUS_ERROR; else `endif `ifdef CFG_DEBUG_ENABLED if (watchpoint_exception == `TRUE) eid_x = `LM32_EID_WATCHPOINT; else `endif `ifdef CFG_MC_DIVIDE_ENABLED if (divide_by_zero_exception == `TRUE) eid_x = `LM32_EID_DIVIDE_BY_ZERO; else `endif `ifdef CFG_INTERRUPTS_ENABLED if ( (interrupt_exception == `TRUE) `ifdef LM32_SINGLE_STEP_ENABLED && (dc_ss == `FALSE) `endif ) eid_x = `LM32_EID_INTERRUPT; else `endif eid_x = `LM32_EID_SCALL; end // Stall generation assign stall_a = (stall_f == `TRUE); assign stall_f = (stall_d == `TRUE); assign stall_d = (stall_x == `TRUE) || ( (interlock == `TRUE) && (kill_d == `FALSE) ) || ( ( (eret_d == `TRUE) || (scall_d == `TRUE) || (bus_error_d == `TRUE) ) && ( (load_q_x == `TRUE) || (load_q_m == `TRUE) || (store_q_x == `TRUE) || (store_q_m == `TRUE) || (D_CYC_O == `TRUE) ) && (kill_d == `FALSE) ) `ifdef CFG_DEBUG_ENABLED || ( ( (break_d == `TRUE) || (bret_d == `TRUE) ) && ( (load_q_x == `TRUE) || (store_q_x == `TRUE) || (load_q_m == `TRUE) || (store_q_m == `TRUE) || (D_CYC_O == `TRUE) ) && (kill_d == `FALSE) ) `endif || ( (csr_write_enable_d == `TRUE) && (load_q_x == `TRUE) ) ; assign stall_x = (stall_m == `TRUE) `ifdef LM32_MC_ARITHMETIC_ENABLED || ( (mc_stall_request_x == `TRUE) && (kill_x == `FALSE) ) `endif `ifdef CFG_IROM_ENABLED // Stall load/store instruction in D stage if there is an ongoing store // operation to instruction ROM in M stage || ( (irom_stall_request_x == `TRUE) && ( (load_d == `TRUE) || (store_d == `TRUE) ) ) `endif ; assign stall_m = (stall_wb_load == `TRUE) `ifdef CFG_SIZE_OVER_SPEED || (D_CYC_O == `TRUE) `else || ( (D_CYC_O == `TRUE) && ( (store_m == `TRUE) /* Bug: Following loop does not allow interrupts to be services since either D_CYC_O or store_m is always high during entire duration of loop. L1: addi r1, r1, 1 sw (r2,0), r1 bi L1 Introduce a single-cycle stall when a wishbone cycle is in progress and a new store instruction is in Execute stage and a interrupt exception has occured. This stall will ensure that D_CYC_O and store_m will both be low for one cycle. */ || ((store_x == `TRUE) && (interrupt_exception == `TRUE)) || (load_m == `TRUE) || (load_x == `TRUE) ) ) `endif `ifdef CFG_DCACHE_ENABLED || (dcache_stall_request == `TRUE) // Need to stall in case a taken branch is in M stage and data cache is only being flush, so wont be restarted `endif `ifdef CFG_ICACHE_ENABLED || (icache_stall_request == `TRUE) // Pipeline needs to be stalled otherwise branches may be lost || ((I_CYC_O == `TRUE) && ((branch_m == `TRUE) || (exception_m == `TRUE))) `else `ifdef CFG_IWB_ENABLED || (I_CYC_O == `TRUE) `endif `endif `ifdef CFG_USER_ENABLED || ( (user_valid == `TRUE) // Stall whole pipeline, rather than just X stage, where the instruction is, so we don't have to worry about exceptions (maybe) && (user_complete == `FALSE) ) `endif ; // Qualify state changing control signals `ifdef LM32_MC_ARITHMETIC_ENABLED assign q_d = (valid_d == `TRUE) && (kill_d == `FALSE); `endif `ifdef CFG_MC_BARREL_SHIFT_ENABLED assign shift_left_q_d = (shift_left_d == `TRUE) && (q_d == `TRUE); assign shift_right_q_d = (shift_right_d == `TRUE) && (q_d == `TRUE); `endif `ifdef CFG_MC_MULTIPLY_ENABLED assign multiply_q_d = (multiply_d == `TRUE) && (q_d == `TRUE); `endif `ifdef CFG_MC_DIVIDE_ENABLED assign divide_q_d = (divide_d == `TRUE) && (q_d == `TRUE); assign modulus_q_d = (modulus_d == `TRUE) && (q_d == `TRUE); `endif assign q_x = (valid_x == `TRUE) && (kill_x == `FALSE); assign csr_write_enable_q_x = (csr_write_enable_x == `TRUE) && (q_x == `TRUE); assign eret_q_x = (eret_x == `TRUE) && (q_x == `TRUE); `ifdef CFG_DEBUG_ENABLED assign bret_q_x = (bret_x == `TRUE) && (q_x == `TRUE); `endif assign load_q_x = (load_x == `TRUE) && (q_x == `TRUE) `ifdef CFG_DEBUG_ENABLED && (bp_match == `FALSE) `endif ; assign store_q_x = (store_x == `TRUE) && (q_x == `TRUE) `ifdef CFG_DEBUG_ENABLED && (bp_match == `FALSE) `endif ; `ifdef CFG_USER_ENABLED assign user_valid = (x_result_sel_user_x == `TRUE) && (q_x == `TRUE); `endif assign q_m = (valid_m == `TRUE) && (kill_m == `FALSE) && (exception_m == `FALSE); assign load_q_m = (load_m == `TRUE) && (q_m == `TRUE); assign store_q_m = (store_m == `TRUE) && (q_m == `TRUE); `ifdef CFG_DEBUG_ENABLED assign debug_exception_q_w = ((debug_exception_w == `TRUE) && (valid_w == `TRUE)); assign non_debug_exception_q_w = ((non_debug_exception_w == `TRUE) && (valid_w == `TRUE)); `else assign exception_q_w = ((exception_w == `TRUE) && (valid_w == `TRUE)); `endif // Don't qualify register write enables with kill, as the signal is needed early, and it doesn't matter if the instruction is killed (except for the actual write - but that is handled separately) assign write_enable_q_x = (write_enable_x == `TRUE) && (valid_x == `TRUE) && (branch_flushX_m == `FALSE); assign write_enable_q_m = (write_enable_m == `TRUE) && (valid_m == `TRUE); assign write_enable_q_w = (write_enable_w == `TRUE) && (valid_w == `TRUE); // The enable that actually does write the registers needs to be qualified with kill assign reg_write_enable_q_w = (write_enable_w == `TRUE) && (kill_w == `FALSE) && (valid_w == `TRUE); // Configuration (CFG) CSR assign cfg = { `LM32_REVISION, watchpoints[3:0], breakpoints[3:0], interrupts[5:0], `ifdef CFG_JTAG_UART_ENABLED `TRUE, `else `FALSE, `endif `ifdef CFG_ROM_DEBUG_ENABLED `TRUE, `else `FALSE, `endif `ifdef CFG_HW_DEBUG_ENABLED `TRUE, `else `FALSE, `endif `ifdef CFG_DEBUG_ENABLED `TRUE, `else `FALSE, `endif `ifdef CFG_ICACHE_ENABLED `TRUE, `else `FALSE, `endif `ifdef CFG_DCACHE_ENABLED `TRUE, `else `FALSE, `endif `ifdef CFG_CYCLE_COUNTER_ENABLED `TRUE, `else `FALSE, `endif `ifdef CFG_USER_ENABLED `TRUE, `else `FALSE, `endif `ifdef CFG_SIGN_EXTEND_ENABLED `TRUE, `else `FALSE, `endif `ifdef LM32_BARREL_SHIFT_ENABLED `TRUE, `else `FALSE, `endif `ifdef CFG_MC_DIVIDE_ENABLED `TRUE, `else `FALSE, `endif `ifdef LM32_MULTIPLY_ENABLED `TRUE `else `FALSE `endif }; assign cfg2 = { 30'b0, `ifdef CFG_IROM_ENABLED `TRUE, `else `FALSE, `endif `ifdef CFG_DRAM_ENABLED `TRUE `else `FALSE `endif }; // Cache flush `ifdef CFG_ICACHE_ENABLED assign iflush = (csr_write_enable_d == `TRUE) && (csr_d == `LM32_CSR_ICC) && (stall_d == `FALSE) && (kill_d == `FALSE) && (valid_d == `TRUE); `endif `ifdef CFG_DCACHE_ENABLED assign dflush_x = (csr_write_enable_q_x == `TRUE) && (csr_x == `LM32_CSR_DCC); `endif // Extract CSR index assign csr_d = read_idx_0_d[`LM32_CSR_RNG]; // CSR reads always @(*) begin case (csr_x) `ifdef CFG_INTERRUPTS_ENABLED `LM32_CSR_IE, `LM32_CSR_IM, `LM32_CSR_IP: csr_read_data_x = interrupt_csr_read_data_x; `endif `ifdef CFG_CYCLE_COUNTER_ENABLED `LM32_CSR_CC: csr_read_data_x = cc; `endif `LM32_CSR_CFG: csr_read_data_x = cfg; `LM32_CSR_EBA: csr_read_data_x = {eba, 8'h00}; `ifdef CFG_DEBUG_ENABLED `LM32_CSR_DEBA: csr_read_data_x = {deba, 8'h00}; `endif `ifdef CFG_JTAG_UART_ENABLED `LM32_CSR_JTX: csr_read_data_x = jtx_csr_read_data; `LM32_CSR_JRX: csr_read_data_x = jrx_csr_read_data; `endif `LM32_CSR_CFG2: csr_read_data_x = cfg2; default: csr_read_data_x = {`LM32_WORD_WIDTH{1'bx}}; endcase end ///////////////////////////////////////////////////// // Sequential Logic ///////////////////////////////////////////////////// // Exception Base Address (EBA) CSR always @(posedge clk_i `CFG_RESET_SENSITIVITY) begin if (rst_i == `TRUE) eba <= #1 eba_reset[`LM32_PC_WIDTH+2-1:8]; else begin if ((csr_write_enable_q_x == `TRUE) && (csr_x == `LM32_CSR_EBA) && (stall_x == `FALSE)) eba <= #1 operand_1_x[`LM32_PC_WIDTH+2-1:8]; `ifdef CFG_HW_DEBUG_ENABLED if ((jtag_csr_write_enable == `TRUE) && (jtag_csr == `LM32_CSR_EBA)) eba <= #1 jtag_csr_write_data[`LM32_PC_WIDTH+2-1:8]; `endif end end `ifdef CFG_DEBUG_ENABLED // Debug Exception Base Address (DEBA) CSR always @(posedge clk_i `CFG_RESET_SENSITIVITY) begin if (rst_i == `TRUE) deba <= #1 deba_reset[`LM32_PC_WIDTH+2-1:8]; else begin if ((csr_write_enable_q_x == `TRUE) && (csr_x == `LM32_CSR_DEBA) && (stall_x == `FALSE)) deba <= #1 operand_1_x[`LM32_PC_WIDTH+2-1:8]; `ifdef CFG_HW_DEBUG_ENABLED if ((jtag_csr_write_enable == `TRUE) && (jtag_csr == `LM32_CSR_DEBA)) deba <= #1 jtag_csr_write_data[`LM32_PC_WIDTH+2-1:8]; `endif end end `endif // Cycle Counter (CC) CSR `ifdef CFG_CYCLE_COUNTER_ENABLED always @(posedge clk_i `CFG_RESET_SENSITIVITY) begin if (rst_i == `TRUE) cc <= #1 {`LM32_WORD_WIDTH{1'b0}}; else cc <= #1 cc + 1'b1; end `endif `ifdef CFG_BUS_ERRORS_ENABLED // Watch for data bus errors always @(posedge clk_i `CFG_RESET_SENSITIVITY) begin if (rst_i == `TRUE) data_bus_error_seen <= #1 `FALSE; else begin // Set flag when bus error is detected if ((D_ERR_I == `TRUE) && (D_CYC_O == `TRUE)) data_bus_error_seen <= #1 `TRUE; // Clear flag when exception is taken if ((exception_m == `TRUE) && (kill_m == `FALSE)) data_bus_error_seen <= #1 `FALSE; end end `endif // Valid bits to indicate whether an instruction in a partcular pipeline stage is valid or not `ifdef CFG_ICACHE_ENABLED `ifdef CFG_DCACHE_ENABLED always @(*) begin if ( (icache_refill_request == `TRUE) || (dcache_refill_request == `TRUE) ) valid_a = `FALSE; else if ( (icache_restart_request == `TRUE) || (dcache_restart_request == `TRUE) ) valid_a = `TRUE; else valid_a = !icache_refilling && !dcache_refilling; end `else always @(*) begin if (icache_refill_request == `TRUE) valid_a = `FALSE; else if (icache_restart_request == `TRUE) valid_a = `TRUE; else valid_a = !icache_refilling; end `endif `else `ifdef CFG_DCACHE_ENABLED always @(*) begin if (dcache_refill_request == `TRUE) valid_a = `FALSE; else if (dcache_restart_request == `TRUE) valid_a = `TRUE; else valid_a = !dcache_refilling; end `endif `endif always @(posedge clk_i `CFG_RESET_SENSITIVITY) begin if (rst_i == `TRUE) begin valid_f <= #1 `FALSE; valid_d <= #1 `FALSE; valid_x <= #1 `FALSE; valid_m <= #1 `FALSE; valid_w <= #1 `FALSE; end else begin if ((kill_f == `TRUE) || (stall_a == `FALSE)) `ifdef LM32_CACHE_ENABLED valid_f <= #1 valid_a; `else valid_f <= #1 `TRUE; `endif else if (stall_f == `FALSE) valid_f <= #1 `FALSE; if (kill_d == `TRUE) valid_d <= #1 `FALSE; else if (stall_f == `FALSE) valid_d <= #1 valid_f & !kill_f; else if (stall_d == `FALSE) valid_d <= #1 `FALSE; if (stall_d == `FALSE) valid_x <= #1 valid_d & !kill_d; else if (kill_x == `TRUE) valid_x <= #1 `FALSE; else if (stall_x == `FALSE) valid_x <= #1 `FALSE; if (kill_m == `TRUE) valid_m <= #1 `FALSE; else if (stall_x == `FALSE) valid_m <= #1 valid_x & !kill_x; else if (stall_m == `FALSE) valid_m <= #1 `FALSE; if (stall_m == `FALSE) valid_w <= #1 valid_m & !kill_m; else valid_w <= #1 `FALSE; end end // Microcode pipeline registers always @(posedge clk_i `CFG_RESET_SENSITIVITY) begin if (rst_i == `TRUE) begin `ifdef CFG_USER_ENABLED user_opcode <= #1 {`LM32_USER_OPCODE_WIDTH{1'b0}}; `endif operand_0_x <= #1 {`LM32_WORD_WIDTH{1'b0}}; operand_1_x <= #1 {`LM32_WORD_WIDTH{1'b0}}; store_operand_x <= #1 {`LM32_WORD_WIDTH{1'b0}}; branch_target_x <= #1 {`LM32_WORD_WIDTH{1'b0}}; x_result_sel_csr_x <= #1 `FALSE; `ifdef LM32_MC_ARITHMETIC_ENABLED x_result_sel_mc_arith_x <= #1 `FALSE; `endif `ifdef LM32_NO_BARREL_SHIFT x_result_sel_shift_x <= #1 `FALSE; `endif `ifdef CFG_SIGN_EXTEND_ENABLED x_result_sel_sext_x <= #1 `FALSE; `endif x_result_sel_logic_x <= #1 `FALSE; `ifdef CFG_USER_ENABLED x_result_sel_user_x <= #1 `FALSE; `endif x_result_sel_add_x <= #1 `FALSE; m_result_sel_compare_x <= #1 `FALSE; `ifdef CFG_PL_BARREL_SHIFT_ENABLED m_result_sel_shift_x <= #1 `FALSE; `endif w_result_sel_load_x <= #1 `FALSE; `ifdef CFG_PL_MULTIPLY_ENABLED w_result_sel_mul_x <= #1 `FALSE; `endif x_bypass_enable_x <= #1 `FALSE; m_bypass_enable_x <= #1 `FALSE; write_enable_x <= #1 `FALSE; write_idx_x <= #1 {`LM32_REG_IDX_WIDTH{1'b0}}; csr_x <= #1 {`LM32_CSR_WIDTH{1'b0}}; load_x <= #1 `FALSE; store_x <= #1 `FALSE; size_x <= #1 {`LM32_SIZE_WIDTH{1'b0}}; sign_extend_x <= #1 `FALSE; adder_op_x <= #1 `FALSE; adder_op_x_n <= #1 `FALSE; logic_op_x <= #1 4'h0; `ifdef CFG_PL_BARREL_SHIFT_ENABLED direction_x <= #1 `FALSE; `endif `ifdef CFG_ROTATE_ENABLED rotate_x <= #1 `FALSE; `endif branch_x <= #1 `FALSE; branch_predict_x <= #1 `FALSE; branch_predict_taken_x <= #1 `FALSE; condition_x <= #1 `LM32_CONDITION_U1; `ifdef CFG_DEBUG_ENABLED break_x <= #1 `FALSE; `endif scall_x <= #1 `FALSE; eret_x <= #1 `FALSE; `ifdef CFG_DEBUG_ENABLED bret_x <= #1 `FALSE; `endif `ifdef CFG_BUS_ERRORS_ENABLED bus_error_x <= #1 `FALSE; data_bus_error_exception_m <= #1 `FALSE; `endif csr_write_enable_x <= #1 `FALSE; operand_m <= #1 {`LM32_WORD_WIDTH{1'b0}}; branch_target_m <= #1 {`LM32_WORD_WIDTH{1'b0}}; m_result_sel_compare_m <= #1 `FALSE; `ifdef CFG_PL_BARREL_SHIFT_ENABLED m_result_sel_shift_m <= #1 `FALSE; `endif w_result_sel_load_m <= #1 `FALSE; `ifdef CFG_PL_MULTIPLY_ENABLED w_result_sel_mul_m <= #1 `FALSE; `endif m_bypass_enable_m <= #1 `FALSE; branch_m <= #1 `FALSE; branch_predict_m <= #1 `FALSE; branch_predict_taken_m <= #1 `FALSE; exception_m <= #1 `FALSE; load_m <= #1 `FALSE; store_m <= #1 `FALSE; write_enable_m <= #1 `FALSE; write_idx_m <= #1 {`LM32_REG_IDX_WIDTH{1'b0}}; condition_met_m <= #1 `FALSE; `ifdef CFG_DCACHE_ENABLED dflush_m <= #1 `FALSE; `endif `ifdef CFG_DEBUG_ENABLED debug_exception_m <= #1 `FALSE; non_debug_exception_m <= #1 `FALSE; `endif operand_w <= #1 {`LM32_WORD_WIDTH{1'b0}}; w_result_sel_load_w <= #1 `FALSE; `ifdef CFG_PL_MULTIPLY_ENABLED w_result_sel_mul_w <= #1 `FALSE; `endif write_idx_w <= #1 {`LM32_REG_IDX_WIDTH{1'b0}}; write_enable_w <= #1 `FALSE; `ifdef CFG_DEBUG_ENABLED debug_exception_w <= #1 `FALSE; non_debug_exception_w <= #1 `FALSE; `else exception_w <= #1 `FALSE; `endif `ifdef CFG_BUS_ERRORS_ENABLED memop_pc_w <= #1 {`LM32_PC_WIDTH{1'b0}}; `endif end else begin // D/X stage registers if (stall_x == `FALSE) begin `ifdef CFG_USER_ENABLED user_opcode <= #1 user_opcode_d; `endif operand_0_x <= #1 d_result_0; operand_1_x <= #1 d_result_1; store_operand_x <= #1 bypass_data_1; branch_target_x <= #1 branch_reg_d == `TRUE ? bypass_data_0[`LM32_PC_RNG] : branch_target_d; x_result_sel_csr_x <= #1 x_result_sel_csr_d; `ifdef LM32_MC_ARITHMETIC_ENABLED x_result_sel_mc_arith_x <= #1 x_result_sel_mc_arith_d; `endif `ifdef LM32_NO_BARREL_SHIFT x_result_sel_shift_x <= #1 x_result_sel_shift_d; `endif `ifdef CFG_SIGN_EXTEND_ENABLED x_result_sel_sext_x <= #1 x_result_sel_sext_d; `endif x_result_sel_logic_x <= #1 x_result_sel_logic_d; `ifdef CFG_USER_ENABLED x_result_sel_user_x <= #1 x_result_sel_user_d; `endif x_result_sel_add_x <= #1 x_result_sel_add_d; m_result_sel_compare_x <= #1 m_result_sel_compare_d; `ifdef CFG_PL_BARREL_SHIFT_ENABLED m_result_sel_shift_x <= #1 m_result_sel_shift_d; `endif w_result_sel_load_x <= #1 w_result_sel_load_d; `ifdef CFG_PL_MULTIPLY_ENABLED w_result_sel_mul_x <= #1 w_result_sel_mul_d; `endif x_bypass_enable_x <= #1 x_bypass_enable_d; m_bypass_enable_x <= #1 m_bypass_enable_d; load_x <= #1 load_d; store_x <= #1 store_d; branch_x <= #1 branch_d; branch_predict_x <= #1 branch_predict_d; branch_predict_taken_x <= #1 branch_predict_taken_d; write_idx_x <= #1 write_idx_d; csr_x <= #1 csr_d; size_x <= #1 size_d; sign_extend_x <= #1 sign_extend_d; adder_op_x <= #1 adder_op_d; adder_op_x_n <= #1 ~adder_op_d; logic_op_x <= #1 logic_op_d; `ifdef CFG_PL_BARREL_SHIFT_ENABLED direction_x <= #1 direction_d; `endif `ifdef CFG_ROTATE_ENABLED rotate_x <= #1 rotate_d; `endif condition_x <= #1 condition_d; csr_write_enable_x <= #1 csr_write_enable_d; `ifdef CFG_DEBUG_ENABLED break_x <= #1 break_d; `endif scall_x <= #1 scall_d; `ifdef CFG_BUS_ERRORS_ENABLED bus_error_x <= #1 bus_error_d; `endif eret_x <= #1 eret_d; `ifdef CFG_DEBUG_ENABLED bret_x <= #1 bret_d; `endif write_enable_x <= #1 write_enable_d; end // X/M stage registers if (stall_m == `FALSE) begin operand_m <= #1 x_result; m_result_sel_compare_m <= #1 m_result_sel_compare_x; `ifdef CFG_PL_BARREL_SHIFT_ENABLED m_result_sel_shift_m <= #1 m_result_sel_shift_x; `endif if (exception_x == `TRUE) begin w_result_sel_load_m <= #1 `FALSE; `ifdef CFG_PL_MULTIPLY_ENABLED w_result_sel_mul_m <= #1 `FALSE; `endif end else begin w_result_sel_load_m <= #1 w_result_sel_load_x; `ifdef CFG_PL_MULTIPLY_ENABLED w_result_sel_mul_m <= #1 w_result_sel_mul_x; `endif end m_bypass_enable_m <= #1 m_bypass_enable_x; `ifdef CFG_PL_BARREL_SHIFT_ENABLED `endif load_m <= #1 load_x; store_m <= #1 store_x; `ifdef CFG_FAST_UNCONDITIONAL_BRANCH branch_m <= #1 branch_x && !branch_taken_x; `else branch_m <= #1 branch_x; branch_predict_m <= #1 branch_predict_x; branch_predict_taken_m <= #1 branch_predict_taken_x; `endif `ifdef CFG_DEBUG_ENABLED // Data bus errors are generated by the wishbone and are // made known to the processor only in next cycle (as a // non-debug exception). A break instruction can be seen // in same cycle (causing a debug exception). Handle non // -debug exception first! if (non_debug_exception_x == `TRUE) write_idx_m <= #1 `LM32_EA_REG; else if (debug_exception_x == `TRUE) write_idx_m <= #1 `LM32_BA_REG; else write_idx_m <= #1 write_idx_x; `else if (exception_x == `TRUE) write_idx_m <= #1 `LM32_EA_REG; else write_idx_m <= #1 write_idx_x; `endif condition_met_m <= #1 condition_met_x; `ifdef CFG_DEBUG_ENABLED if (exception_x == `TRUE) if ((dc_re == `TRUE) `ifdef CFG_ALTERNATE_EBA || (at_debug == `TRUE) `endif || ((debug_exception_x == `TRUE) && (non_debug_exception_x == `FALSE))) branch_target_m <= #1 {deba, eid_x, {3{1'b0}}}; else branch_target_m <= #1 {eba, eid_x, {3{1'b0}}}; else branch_target_m <= #1 branch_target_x; `else branch_target_m <= #1 exception_x == `TRUE ? {eba, eid_x, {3{1'b0}}} : branch_target_x; `endif `ifdef CFG_TRACE_ENABLED eid_m <= #1 eid_x; `endif `ifdef CFG_DCACHE_ENABLED dflush_m <= #1 dflush_x; `endif eret_m <= #1 eret_q_x; `ifdef CFG_DEBUG_ENABLED bret_m <= #1 bret_q_x; `endif write_enable_m <= #1 exception_x == `TRUE ? `TRUE : write_enable_x; `ifdef CFG_DEBUG_ENABLED debug_exception_m <= #1 debug_exception_x; non_debug_exception_m <= #1 non_debug_exception_x; `endif end // State changing regs if (stall_m == `FALSE) begin if ((exception_x == `TRUE) && (q_x == `TRUE) && (stall_x == `FALSE)) exception_m <= #1 `TRUE; else exception_m <= #1 `FALSE; `ifdef CFG_BUS_ERRORS_ENABLED data_bus_error_exception_m <= #1 (data_bus_error_exception == `TRUE) `ifdef CFG_DEBUG_ENABLED && (reset_exception == `FALSE) `endif ; `endif end // M/W stage registers `ifdef CFG_BUS_ERRORS_ENABLED operand_w <= #1 exception_m == `TRUE ? (data_bus_error_exception_m ? {memop_pc_w, 2'b00} : {pc_m, 2'b00}) : m_result; `else operand_w <= #1 exception_m == `TRUE ? {pc_m, 2'b00} : m_result; `endif w_result_sel_load_w <= #1 w_result_sel_load_m; `ifdef CFG_PL_MULTIPLY_ENABLED w_result_sel_mul_w <= #1 w_result_sel_mul_m; `endif write_idx_w <= #1 write_idx_m; `ifdef CFG_TRACE_ENABLED eid_w <= #1 eid_m; eret_w <= #1 eret_m; `ifdef CFG_DEBUG_ENABLED bret_w <= #1 bret_m; `endif `endif write_enable_w <= #1 write_enable_m; `ifdef CFG_DEBUG_ENABLED debug_exception_w <= #1 debug_exception_m; non_debug_exception_w <= #1 non_debug_exception_m; `else exception_w <= #1 exception_m; `endif `ifdef CFG_BUS_ERRORS_ENABLED if ( (stall_m == `FALSE) && (data_bus_error_exception == `FALSE) && ( (load_q_m == `TRUE) || (store_q_m == `TRUE) ) ) memop_pc_w <= #1 pc_m; `endif end end `ifdef CFG_EBR_POSEDGE_REGISTER_FILE // Buffer data read from register file, in case a stall occurs, and watch for // any writes to the modified registers always @(posedge clk_i `CFG_RESET_SENSITIVITY) begin if (rst_i == `TRUE) begin use_buf <= #1 `FALSE; reg_data_buf_0 <= #1 {`LM32_WORD_WIDTH{1'b0}}; reg_data_buf_1 <= #1 {`LM32_WORD_WIDTH{1'b0}}; end else begin if (stall_d == `FALSE) use_buf <= #1 `FALSE; else if (use_buf == `FALSE) begin reg_data_buf_0 <= #1 reg_data_live_0; reg_data_buf_1 <= #1 reg_data_live_1; use_buf <= #1 `TRUE; end if (reg_write_enable_q_w == `TRUE) begin if (write_idx_w == read_idx_0_d) reg_data_buf_0 <= #1 w_result; if (write_idx_w == read_idx_1_d) reg_data_buf_1 <= #1 w_result; end end end `endif `ifdef LM32_EBR_REGISTER_FILE `else // Register file write port always @(posedge clk_i `CFG_RESET_SENSITIVITY) begin if (rst_i == `TRUE) begin registers[0] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[1] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[2] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[3] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[4] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[5] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[6] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[7] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[8] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[9] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[10] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[11] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[12] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[13] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[14] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[15] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[16] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[17] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[18] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[19] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[20] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[21] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[22] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[23] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[24] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[25] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[26] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[27] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[28] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[29] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[30] <= #1 {`LM32_WORD_WIDTH{1'b0}}; registers[31] <= #1 {`LM32_WORD_WIDTH{1'b0}}; end else begin if (reg_write_enable_q_w == `TRUE) registers[write_idx_w] <= #1 w_result; end end `endif `ifdef CFG_TRACE_ENABLED // PC tracing logic always @(posedge clk_i `CFG_RESET_SENSITIVITY) begin if (rst_i == `TRUE) begin trace_pc_valid <= #1 `FALSE; trace_pc <= #1 {`LM32_PC_WIDTH{1'b0}}; trace_exception <= #1 `FALSE; trace_eid <= #1 `LM32_EID_RESET; trace_eret <= #1 `FALSE; `ifdef CFG_DEBUG_ENABLED trace_bret <= #1 `FALSE; `endif pc_c <= #1 `CFG_EBA_RESET/4; end else begin trace_pc_valid <= #1 `FALSE; // Has an exception occured `ifdef CFG_DEBUG_ENABLED if ((debug_exception_q_w == `TRUE) || (non_debug_exception_q_w == `TRUE)) `else if (exception_q_w == `TRUE) `endif begin trace_exception <= #1 `TRUE; trace_pc_valid <= #1 `TRUE; trace_pc <= #1 pc_w; trace_eid <= #1 eid_w; end else trace_exception <= #1 `FALSE; if ((valid_w == `TRUE) && (!kill_w)) begin // An instruction is commiting. Determine if it is non-sequential if (pc_c + 1'b1 != pc_w) begin // Non-sequential instruction trace_pc_valid <= #1 `TRUE; trace_pc <= #1 pc_w; end // Record PC so we can determine if next instruction is sequential or not pc_c <= #1 pc_w; // Indicate if it was an eret/bret instruction trace_eret <= #1 eret_w; `ifdef CFG_DEBUG_ENABLED trace_bret <= #1 bret_w; `endif end else begin trace_eret <= #1 `FALSE; `ifdef CFG_DEBUG_ENABLED trace_bret <= #1 `FALSE; `endif end end end `endif ///////////////////////////////////////////////////// // Behavioural Logic ///////////////////////////////////////////////////// // synthesis translate_off // Reset register 0. Only needed for simulation. initial begin `ifdef LM32_EBR_REGISTER_FILE reg_0.mem[0] = {`LM32_WORD_WIDTH{1'b0}}; reg_1.mem[0] = {`LM32_WORD_WIDTH{1'b0}}; `else registers[0] = {`LM32_WORD_WIDTH{1'b0}}; `endif end // synthesis translate_on endmodule