// ================================================================== // >>>>>>>>>>>>>>>>>>>>>>> COPYRIGHT NOTICE <<<<<<<<<<<<<<<<<<<<<<<<< // ------------------------------------------------------------------ // Copyright (c) 2006-2011 by Lattice Semiconductor Corporation // ALL RIGHTS RESERVED // ------------------------------------------------------------------ // // IMPORTANT: THIS FILE IS AUTO-GENERATED BY THE LATTICEMICO SYSTEM. // // Permission: // // Lattice Semiconductor grants permission to use this code // pursuant to the terms of the Lattice Semiconductor Corporation // Open Source License Agreement. // // Disclaimer: // // Lattice Semiconductor provides no warranty regarding the use or // functionality of this code. It is the user's responsibility to // verify the user’s design for consistency and functionality through // the use of formal verification methods. // // -------------------------------------------------------------------- // // Lattice Semiconductor Corporation // 5555 NE Moore Court // Hillsboro, OR 97214 // U.S.A // // TEL: 1-800-Lattice (USA and Canada) // 503-286-8001 (other locations) // // web: http://www.latticesemi.com/ // email: techsupport@latticesemi.com // // -------------------------------------------------------------------- // FILE DETAILS // Project : LatticeMico32 // File : lm32_dcache.v // Title : Data cache // Dependencies : lm32_include.v // Version : 6.1.17 // : Initial Release // Version : 7.0SP2, 3.0 // : No Change // Version : 3.1 // : Support for user-selected resource usage when implementing // : cache memory. Additional parameters must be defined when // : invoking lm32_ram.v // ============================================================================= `include "lm32_include.v" `ifdef CFG_DCACHE_ENABLED `define LM32_DC_ADDR_OFFSET_RNG addr_offset_msb:addr_offset_lsb `define LM32_DC_ADDR_SET_RNG addr_set_msb:addr_set_lsb `define LM32_DC_ADDR_TAG_RNG addr_tag_msb:addr_tag_lsb `define LM32_DC_ADDR_IDX_RNG addr_set_msb:addr_offset_lsb `define LM32_DC_TMEM_ADDR_WIDTH addr_set_width `define LM32_DC_TMEM_ADDR_RNG (`LM32_DC_TMEM_ADDR_WIDTH-1):0 `define LM32_DC_DMEM_ADDR_WIDTH (addr_offset_width+addr_set_width) `define LM32_DC_DMEM_ADDR_RNG (`LM32_DC_DMEM_ADDR_WIDTH-1):0 `define LM32_DC_TAGS_WIDTH (addr_tag_width+1) `define LM32_DC_TAGS_RNG (`LM32_DC_TAGS_WIDTH-1):0 `define LM32_DC_TAGS_TAG_RNG (`LM32_DC_TAGS_WIDTH-1):1 `define LM32_DC_TAGS_VALID_RNG 0 `define LM32_DC_STATE_RNG 2:0 `define LM32_DC_STATE_FLUSH 3'b001 `define LM32_DC_STATE_CHECK 3'b010 `define LM32_DC_STATE_REFILL 3'b100 ///////////////////////////////////////////////////// // Module interface ///////////////////////////////////////////////////// module lm32_dcache ( // ----- Inputs ----- clk_i, rst_i, stall_a, stall_x, stall_m, address_x, address_m, load_q_m, store_q_m, store_data, store_byte_select, refill_ready, refill_data, dflush, // ----- Outputs ----- stall_request, restart_request, refill_request, refill_address, refilling, load_data ); ///////////////////////////////////////////////////// // Parameters ///////////////////////////////////////////////////// parameter associativity = 1; // Associativity of the cache (Number of ways) parameter sets = 512; // Number of sets parameter bytes_per_line = 16; // Number of bytes per cache line parameter base_address = 0; // Base address of cachable memory parameter limit = 0; // Limit (highest address) of cachable memory localparam addr_offset_width = clogb2(bytes_per_line)-1-2; localparam addr_set_width = clogb2(sets)-1; localparam addr_offset_lsb = 2; localparam addr_offset_msb = (addr_offset_lsb+addr_offset_width-1); localparam addr_set_lsb = (addr_offset_msb+1); localparam addr_set_msb = (addr_set_lsb+addr_set_width-1); localparam addr_tag_lsb = (addr_set_msb+1); localparam addr_tag_msb = clogb2(`CFG_DCACHE_LIMIT-`CFG_DCACHE_BASE_ADDRESS)-1; localparam addr_tag_width = (addr_tag_msb-addr_tag_lsb+1); ///////////////////////////////////////////////////// // Inputs ///////////////////////////////////////////////////// input clk_i; // Clock input rst_i; // Reset input stall_a; // Stall A stage input stall_x; // Stall X stage input stall_m; // Stall M stage input [`LM32_WORD_RNG] address_x; // X stage load/store address input [`LM32_WORD_RNG] address_m; // M stage load/store address input load_q_m; // Load instruction in M stage input store_q_m; // Store instruction in M stage input [`LM32_WORD_RNG] store_data; // Data to store input [`LM32_BYTE_SELECT_RNG] store_byte_select; // Which bytes in store data should be modified input refill_ready; // Indicates next word of refill data is ready input [`LM32_WORD_RNG] refill_data; // Refill data input dflush; // Indicates cache should be flushed ///////////////////////////////////////////////////// // Outputs ///////////////////////////////////////////////////// output stall_request; // Request pipeline be stalled because cache is busy wire stall_request; output restart_request; // Request to restart instruction that caused the cache miss reg restart_request; output refill_request; // Request a refill reg refill_request; output [`LM32_WORD_RNG] refill_address; // Address to refill from reg [`LM32_WORD_RNG] refill_address; output refilling; // Indicates if the cache is currently refilling reg refilling; output [`LM32_WORD_RNG] load_data; // Data read from cache wire [`LM32_WORD_RNG] load_data; ///////////////////////////////////////////////////// // Internal nets and registers ///////////////////////////////////////////////////// wire read_port_enable; // Cache memory read port clock enable wire write_port_enable; // Cache memory write port clock enable wire [0:associativity-1] way_tmem_we; // Tag memory write enable wire [0:associativity-1] way_dmem_we; // Data memory write enable wire [`LM32_WORD_RNG] way_data[0:associativity-1]; // Data read from data memory wire [`LM32_DC_TAGS_TAG_RNG] way_tag[0:associativity-1];// Tag read from tag memory wire [0:associativity-1] way_valid; // Indicates which ways are valid wire [0:associativity-1] way_match; // Indicates which ways matched wire miss; // Indicates no ways matched wire [`LM32_DC_TMEM_ADDR_RNG] tmem_read_address; // Tag memory read address wire [`LM32_DC_TMEM_ADDR_RNG] tmem_write_address; // Tag memory write address wire [`LM32_DC_DMEM_ADDR_RNG] dmem_read_address; // Data memory read address wire [`LM32_DC_DMEM_ADDR_RNG] dmem_write_address; // Data memory write address wire [`LM32_DC_TAGS_RNG] tmem_write_data; // Tag memory write data reg [`LM32_WORD_RNG] dmem_write_data; // Data memory write data reg [`LM32_DC_STATE_RNG] state; // Current state of FSM wire flushing; // Indicates if cache is currently flushing wire check; // Indicates if cache is currently checking for hits/misses wire refill; // Indicates if cache is currently refilling wire valid_store; // Indicates if there is a valid store instruction reg [associativity-1:0] refill_way_select; // Which way should be refilled reg [`LM32_DC_ADDR_OFFSET_RNG] refill_offset; // Which word in cache line should be refilled wire last_refill; // Indicates when on last cycle of cache refill reg [`LM32_DC_TMEM_ADDR_RNG] flush_set; // Which set is currently being flushed genvar i, j; ///////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////// `include "lm32_functions.v" ///////////////////////////////////////////////////// // Instantiations ///////////////////////////////////////////////////// generate for (i = 0; i < associativity; i = i + 1) begin : memories // Way data if (`LM32_DC_DMEM_ADDR_WIDTH < 11) begin : data_memories lm32_ram #( // ----- Parameters ------- .data_width (32), .address_width (`LM32_DC_DMEM_ADDR_WIDTH), `ifdef CFG_DCACHE_DAT_USE_DP_TRUE .RAM_IMPLEMENTATION ("EBR"), .RAM_TYPE ("RAM_DP_TRUE") `else `ifdef CFG_DCACHE_DAT_USE_SLICE .RAM_IMPLEMENTATION ("SLICE") `else .RAM_IMPLEMENTATION ("AUTO") `endif `endif ) way_0_data_ram ( // ----- Inputs ------- .read_clk (clk_i), .write_clk (clk_i), .reset (rst_i), .read_address (dmem_read_address), .enable_read (read_port_enable), .write_address (dmem_write_address), .enable_write (write_port_enable), .write_enable (way_dmem_we[i]), .write_data (dmem_write_data), // ----- Outputs ------- .read_data (way_data[i]) ); end else begin for (j = 0; j < 4; j = j + 1) begin : byte_memories lm32_ram #( // ----- Parameters ------- .data_width (8), .address_width (`LM32_DC_DMEM_ADDR_WIDTH), `ifdef CFG_DCACHE_DAT_USE_DP_TRUE .RAM_IMPLEMENTATION ("EBR"), .RAM_TYPE ("RAM_DP_TRUE") `else `ifdef CFG_DCACHE_DAT_USE_SLICE .RAM_IMPLEMENTATION ("SLICE") `else .RAM_IMPLEMENTATION ("AUTO") `endif `endif ) way_0_data_ram ( // ----- Inputs ------- .read_clk (clk_i), .write_clk (clk_i), .reset (rst_i), .read_address (dmem_read_address), .enable_read (read_port_enable), .write_address (dmem_write_address), .enable_write (write_port_enable), .write_enable (way_dmem_we[i] & (store_byte_select[j] | refill)), .write_data (dmem_write_data[(j+1)*8-1:j*8]), // ----- Outputs ------- .read_data (way_data[i][(j+1)*8-1:j*8]) ); end end // Way tags lm32_ram #( // ----- Parameters ------- .data_width (`LM32_DC_TAGS_WIDTH), .address_width (`LM32_DC_TMEM_ADDR_WIDTH), `ifdef CFG_DCACHE_DAT_USE_DP_TRUE .RAM_IMPLEMENTATION ("EBR"), .RAM_TYPE ("RAM_DP_TRUE") `else `ifdef CFG_DCACHE_DAT_USE_SLICE .RAM_IMPLEMENTATION ("SLICE") `else .RAM_IMPLEMENTATION ("AUTO") `endif `endif ) way_0_tag_ram ( // ----- Inputs ------- .read_clk (clk_i), .write_clk (clk_i), .reset (rst_i), .read_address (tmem_read_address), .enable_read (read_port_enable), .write_address (tmem_write_address), .enable_write (`TRUE), .write_enable (way_tmem_we[i]), .write_data (tmem_write_data), // ----- Outputs ------- .read_data ({way_tag[i], way_valid[i]}) ); end endgenerate ///////////////////////////////////////////////////// // Combinational logic ///////////////////////////////////////////////////// // Compute which ways in the cache match the address being read generate for (i = 0; i < associativity; i = i + 1) begin : match assign way_match[i] = ({way_tag[i], way_valid[i]} == {address_m[`LM32_DC_ADDR_TAG_RNG], `TRUE}); end endgenerate // Select data from way that matched the address being read generate if (associativity == 1) begin : data_1 assign load_data = way_data[0]; end else if (associativity == 2) begin : data_2 assign load_data = way_match[0] ? way_data[0] : way_data[1]; end endgenerate generate if (`LM32_DC_DMEM_ADDR_WIDTH < 11) begin // Select data to write to data memories always @(*) begin if (refill == `TRUE) dmem_write_data = refill_data; else begin dmem_write_data[`LM32_BYTE_0_RNG] = store_byte_select[0] ? store_data[`LM32_BYTE_0_RNG] : load_data[`LM32_BYTE_0_RNG]; dmem_write_data[`LM32_BYTE_1_RNG] = store_byte_select[1] ? store_data[`LM32_BYTE_1_RNG] : load_data[`LM32_BYTE_1_RNG]; dmem_write_data[`LM32_BYTE_2_RNG] = store_byte_select[2] ? store_data[`LM32_BYTE_2_RNG] : load_data[`LM32_BYTE_2_RNG]; dmem_write_data[`LM32_BYTE_3_RNG] = store_byte_select[3] ? store_data[`LM32_BYTE_3_RNG] : load_data[`LM32_BYTE_3_RNG]; end end end else begin // Select data to write to data memories - FIXME: Should use different write ports on dual port RAMs, but they don't work always @(*) begin if (refill == `TRUE) dmem_write_data = refill_data; else dmem_write_data = store_data; end end endgenerate // Compute address to use to index into the data memories generate if (bytes_per_line > 4) assign dmem_write_address = (refill == `TRUE) ? {refill_address[`LM32_DC_ADDR_SET_RNG], refill_offset} : address_m[`LM32_DC_ADDR_IDX_RNG]; else assign dmem_write_address = (refill == `TRUE) ? refill_address[`LM32_DC_ADDR_SET_RNG] : address_m[`LM32_DC_ADDR_IDX_RNG]; endgenerate assign dmem_read_address = address_x[`LM32_DC_ADDR_IDX_RNG]; // Compute address to use to index into the tag memories assign tmem_write_address = (flushing == `TRUE) ? flush_set : refill_address[`LM32_DC_ADDR_SET_RNG]; assign tmem_read_address = address_x[`LM32_DC_ADDR_SET_RNG]; // Compute signal to indicate when we are on the last refill accesses generate if (bytes_per_line > 4) assign last_refill = refill_offset == {addr_offset_width{1'b1}}; else assign last_refill = `TRUE; endgenerate // Compute data and tag memory access enable assign read_port_enable = (stall_x == `FALSE); assign write_port_enable = (refill_ready == `TRUE) || !stall_m; // Determine when we have a valid store assign valid_store = (store_q_m == `TRUE) && (check == `TRUE); // Compute data and tag memory write enables generate if (associativity == 1) begin : we_1 assign way_dmem_we[0] = (refill_ready == `TRUE) || ((valid_store == `TRUE) && (way_match[0] == `TRUE)); assign way_tmem_we[0] = (refill_ready == `TRUE) || (flushing == `TRUE); end else begin : we_2 assign way_dmem_we[0] = ((refill_ready == `TRUE) && (refill_way_select[0] == `TRUE)) || ((valid_store == `TRUE) && (way_match[0] == `TRUE)); assign way_dmem_we[1] = ((refill_ready == `TRUE) && (refill_way_select[1] == `TRUE)) || ((valid_store == `TRUE) && (way_match[1] == `TRUE)); assign way_tmem_we[0] = ((refill_ready == `TRUE) && (refill_way_select[0] == `TRUE)) || (flushing == `TRUE); assign way_tmem_we[1] = ((refill_ready == `TRUE) && (refill_way_select[1] == `TRUE)) || (flushing == `TRUE); end endgenerate // On the last refill cycle set the valid bit, for all other writes it should be cleared assign tmem_write_data[`LM32_DC_TAGS_VALID_RNG] = ((last_refill == `TRUE) || (valid_store == `TRUE)) && (flushing == `FALSE); assign tmem_write_data[`LM32_DC_TAGS_TAG_RNG] = refill_address[`LM32_DC_ADDR_TAG_RNG]; // Signals that indicate which state we are in assign flushing = state[0]; assign check = state[1]; assign refill = state[2]; assign miss = (~(|way_match)) && (load_q_m == `TRUE) && (stall_m == `FALSE); assign stall_request = (check == `FALSE); ///////////////////////////////////////////////////// // Sequential logic ///////////////////////////////////////////////////// // Record way selected for replacement on a cache miss generate if (associativity >= 2) begin : way_select always @(posedge clk_i `CFG_RESET_SENSITIVITY) begin if (rst_i == `TRUE) refill_way_select <= #1 {{associativity-1{1'b0}}, 1'b1}; else begin if (refill_request == `TRUE) refill_way_select <= #1 {refill_way_select[0], refill_way_select[1]}; end end end endgenerate // Record whether we are currently refilling always @(posedge clk_i `CFG_RESET_SENSITIVITY) begin if (rst_i == `TRUE) refilling <= #1 `FALSE; else refilling <= #1 refill; end // Instruction cache control FSM always @(posedge clk_i `CFG_RESET_SENSITIVITY) begin if (rst_i == `TRUE) begin state <= #1 `LM32_DC_STATE_FLUSH; flush_set <= #1 {`LM32_DC_TMEM_ADDR_WIDTH{1'b1}}; refill_request <= #1 `FALSE; refill_address <= #1 {`LM32_WORD_WIDTH{1'bx}}; restart_request <= #1 `FALSE; end else begin case (state) // Flush the cache `LM32_DC_STATE_FLUSH: begin if (flush_set == {`LM32_DC_TMEM_ADDR_WIDTH{1'b0}}) state <= #1 `LM32_DC_STATE_CHECK; flush_set <= #1 flush_set - 1'b1; end // Check for cache misses `LM32_DC_STATE_CHECK: begin if (stall_a == `FALSE) restart_request <= #1 `FALSE; if (miss == `TRUE) begin refill_request <= #1 `TRUE; refill_address <= #1 address_m; state <= #1 `LM32_DC_STATE_REFILL; end else if (dflush == `TRUE) state <= #1 `LM32_DC_STATE_FLUSH; end // Refill a cache line `LM32_DC_STATE_REFILL: begin refill_request <= #1 `FALSE; if (refill_ready == `TRUE) begin if (last_refill == `TRUE) begin restart_request <= #1 `TRUE; state <= #1 `LM32_DC_STATE_CHECK; end end end endcase end end generate if (bytes_per_line > 4) begin // Refill offset always @(posedge clk_i `CFG_RESET_SENSITIVITY) begin if (rst_i == `TRUE) refill_offset <= #1 {addr_offset_width{1'b0}}; else begin case (state) // Check for cache misses `LM32_DC_STATE_CHECK: begin if (miss == `TRUE) refill_offset <= #1 {addr_offset_width{1'b0}}; end // Refill a cache line `LM32_DC_STATE_REFILL: begin if (refill_ready == `TRUE) refill_offset <= #1 refill_offset + 1'b1; end endcase end end end endgenerate endmodule `endif